We consider networks of processes that all execute the same finite-state protocol and communicate via a rendez-vous mechanism. When a process requests a rendez-vous, another process can respond to it and they both change their control states accordingly. We focus here on a specific semantics, called non-blocking, where the process requesting a rendez-vous can change its state even if no process can respond to it. In this context, we study the parameterised coverability problem of a configuration, which consists in determining whether there is an initialnumber of processes and an execution allowing to reach a configuration bigger than a given one. We show that this problem is EXPSPACE-complete and can be solved in polynomial time if the protocol is partitioned into two sets of states, the states from which a process can request a rendez-vous and the ones from which it can answer one. We also prove that the problem of the existence of an execution bringing all the processes in a final state is undecidable in our context. These two problems can be solved in polynomial time with the classical rendez-vous semantics.
Ensembling a neural network is a widely recognized approach to enhance model performance, estimate uncertainty, and improve robustness in deep supervised learning. However, deep ensembles often come with high computational costs and memory demands. In addition, the efficiency of a deep ensemble is related to diversity among the ensemble members which is challenging for large, over-parameterized deep neural networks. Moreover, ensemble learning has not yet seen such widespread adoption, and it remains a challenging endeavor for self-supervised or unsupervised representation learning. Motivated by these challenges, we present a novel self-supervised training regime that leverages an ensemble of independent sub-networks, complemented by a new loss function designed to encourage diversity. Our method efficiently builds a sub-model ensemble with high diversity, leading to well-calibrated estimates of model uncertainty, all achieved with minimal computational overhead compared to traditional deep self-supervised ensembles. To evaluate the effectiveness of our approach, we conducted extensive experiments across various tasks, including in-distribution generalization, out-of-distribution detection, dataset corruption, and semi-supervised settings. The results demonstrate that our method significantly improves prediction reliability. Our approach not only achieves excellent accuracy but also enhances calibration, surpassing baseline performance across a wide range of self-supervised architectures in computer vision, natural language processing, and genomics data.
We study the use of binary activated neural networks as interpretable and explainable predictors in the context of regression tasks on tabular data; more specifically, we provide guarantees on their expressiveness, present an approach based on the efficient computation of SHAP values for quantifying the relative importance of the features, hidden neurons and even weights. As the model's simplicity is instrumental in achieving interpretability, we propose a greedy algorithm for building compact binary activated networks. This approach doesn't need to fix an architecture for the network in advance: it is built one layer at a time, one neuron at a time, leading to predictors that aren't needlessly complex for a given task.
Due to the proliferation of malware, defenders are increasingly turning to automation and machine learning as part of the malware detection tool-chain. However, machine learning models are susceptible to adversarial attacks, requiring the testing of model and product robustness. Meanwhile, attackers also seek to automate malware generation and evasion of antivirus systems, and defenders try to gain insight into their methods. This work proposes a new algorithm that combines Malware Evasion and Model Extraction (MEME) attacks. MEME uses model-based reinforcement learning to adversarially modify Windows executable binary samples while simultaneously training a surrogate model with a high agreement with the target model to evade. To evaluate this method, we compare it with two state-of-the-art attacks in adversarial malware creation, using three well-known published models and one antivirus product as targets. Results show that MEME outperforms the state-of-the-art methods in terms of evasion capabilities in almost all cases, producing evasive malware with an evasion rate in the range of 32-73%. It also produces surrogate models with a prediction label agreement with the respective target models between 97-99%. The surrogate could be used to fine-tune and improve the evasion rate in the future.
We propose augmenting the empathetic capacities of social robots by integrating non-verbal cues. Our primary contribution is the design and labeling of four types of empathetic non-verbal cues, abbreviated as SAFE: Speech, Action (gesture), Facial expression, and Emotion, in a social robot. These cues are generated using a Large Language Model (LLM). We developed an LLM-based conversational system for the robot and assessed its alignment with social cues as defined by human counselors. Preliminary results show distinct patterns in the robot's responses, such as a preference for calm and positive social emotions like 'joy' and 'lively', and frequent nodding gestures. Despite these tendencies, our approach has led to the development of a social robot capable of context-aware and more authentic interactions. Our work lays the groundwork for future studies on human-robot interactions, emphasizing the essential role of both verbal and non-verbal cues in creating social and empathetic robots.
There appears to be a dilemma between the freedom of expression and protection from the adverse effects of uncivil political expression online. While previous studies have revealed various factors that affect attitudes toward freedom of expression and speech restrictions, it is less clear whether people have intergroup biases when forming these attitudes. To address this gap, the present study conducted a pre-registered online survey experiment and investigated people's attitudes toward uncivil political expression by randomizing its in-group and out-group affiliations. The results revealed that people tend to perceive uncivil political expression directed from an out-group toward an in-group as more uncivil, compared to the expression originating from an in-group toward an out-group. This difference subsequently influences their inclination to endorse speech restrictions when faced with uncivil political comments: stronger support for restrictions on expressions from the out-group toward the in-group as opposed to those from the in-group toward the out-group. These findings should serve as a wake-up call to public opinion that advocates for restrictions on uncivil political expression.
Due to the mutual occlusion, severe scale variation, and complex spatial distribution, the current multi-person mesh recovery methods cannot produce accurate absolute body poses and shapes in large-scale crowded scenes. To address the obstacles, we fully exploit crowd features for reconstructing groups of people from a monocular image. A novel hypergraph relational reasoning network is proposed to formulate the complex and high-order relation correlations among individuals and groups in the crowd. We first extract compact human features and location information from the original high-resolution image. By conducting the relational reasoning on the extracted individual features, the underlying crowd collectiveness and interaction relationship can provide additional group information for the reconstruction. Finally, the updated individual features and the localization information are used to regress human meshes in camera coordinates. To facilitate the network training, we further build pseudo ground-truth on two crowd datasets, which may also promote future research on pose estimation and human behavior understanding in crowded scenes. The experimental results show that our approach outperforms other baseline methods both in crowded and common scenarios. The code and datasets are publicly available at //github.com/boycehbz/GroupRec.
When applying deep learning to remote sensing data in archaeological research, a notable obstacle is the limited availability of suitable datasets for training models. The application of transfer learning is frequently employed to mitigate this drawback. However, there is still a need to explore its effectiveness when applied across different archaeological datasets. This paper compares the performance of various transfer learning configurations using two semantic segmentation deep neural networks on two LiDAR datasets. The experimental results indicate that transfer learning-based approaches in archaeology can lead to performance improvements, although a systematic enhancement has not yet been observed. We provide specific insights about the validity of such techniques that can serve as a baseline for future works.
Crossed random effects structures arise in many scientific contexts. They raise severe computational problems with likelihood and Bayesian computations scaling like $N^{3/2}$ or worse for $N$ data points. In this paper we develop a composite likelihood approach for crossed random effects probit models. For data arranged in rows and columns, one likelihood uses marginal distributions of the responses as if they were independent, another uses a hierarchical model capturing all within row dependence as if the rows were independent and the third model reverses the roles of rows and columns. We find that this method has a cost that grows as $\mathrm{O}(N)$ in crossed random effects settings where using the Laplace approximation has cost that grows superlinearly. We show how to get consistent estimates of the probit slope and variance components by maximizing those three likelihoods. The algorithm scales readily to a data set of five million observations from Stitch Fix.
Phishing is a major cyber threat to organizations that can cause financial and reputational damage, threatening their existence. The technical measures against phishing should be complemented by awareness training for employees. However, there is little validation of awareness measures. Consequently, organizations have an additional burden when integrating awareness training, as there is no consensus on which method brings the best success. This paper examines how awareness concepts can be successfully implemented and validated. For this purpose, various factors, such as requirements and possible combinations of methods, are taken into account in our case study at a small- and medium-sized enterprise (SME). To measure success, phishing exercises are conducted. The study suggests that pleasant campaigns result in better performance in the simulated phishing exercise. In addition, significant improvements and differences in the target groups could be observed. The implementation of awareness training with integrated key performance indicators can be used as a basis for other organizations.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.