This paper describes an algorithm (thus far referred to as the "Dragonfly Algorithm") by which the subset-sum problem can be solved in $O(n^{11}\log(n))$ time complexity. The paper will first detail the generalized "product-derivative" method (and the more efficient version of this method which will be used in the algorithm) by which a pair of monic polynomials can be used to generate a system of unique monic polynomials for which each polynomial in the system will share with every other a set of roots equivalent to the intersection of the roots of the original pair; this method will then be applied on a pair of polynomials one of which, $\phi(x)$, exhibiting known roots based on the instance of the subset-sum problem and the other of which, $t(x)$, containing unknown placeholder coefficients and representing an unknown subset of the linear factors of $\phi(x)$.
Given a computable sequence of natural numbers, it is a natural task to find a G\"odel number of a program that generates this sequence. It is easy to see that this problem is neither continuous nor computable. In algorithmic learning theory this problem is well studied from several perspectives and one question studied there is for which sequences this problem is at least learnable in the limit. Here we study the problem on all computable sequences and we classify the Weihrauch complexity of it. For this purpose we can, among other methods, utilize the amalgamation technique known from learning theory. As a benchmark for the classification we use closed and compact choice problems and their jumps on natural numbers, and we argue that these problems correspond to induction and boundedness principles, as they are known from the Kirby-Paris hierarchy in reverse mathematics. We provide a topological as well as a computability-theoretic classification, which reveal some significant differences.
In 2013, Pak and Panova proved the strict unimodality property of $q$-binomial coefficients $\binom{\ell+m}{m}_q$ (as polynomials in $q$) based on the combinatorics of Young tableaux and the semigroup property of Kronecker coefficients. They showed it to be true for all $\ell,m\geq 8$ and a few other cases. We propose a different approach to this problem based on computer algebra, where we establish a closed form for the coefficients of these polynomials and then use cylindrical algebraic decomposition to identify exactly the range of coefficients where strict unimodality holds. This strategy allows us to tackle generalizations of the problem, e.g., to show unimodality with larger gaps or unimodality of related sequences. In particular, we present proofs of two additional cases of a conjecture by Stanley and Zanello.
Black-box optimization (BBO) can be used to optimize functions whose analytic form is unknown. A common approach to realising BBO is to learn a surrogate model which approximates the target black-box function which can then be solved via white-box optimization methods. In this paper, we present our approach BOX-QUBO, where the surrogate model is a QUBO matrix. However, unlike in previous state-of-the-art approaches, this matrix is not trained entirely by regression, but mostly by classification between 'good' and 'bad' solutions. This better accounts for the low capacity of the QUBO matrix, resulting in significantly better solutions overall. We tested our approach against the state-of-the-art on four domains and in all of them BOX-QUBO showed better results. A second contribution of this paper is the idea to also solve white-box problems, i.e. problems which could be directly formulated as QUBO, by means of black-box optimization in order to reduce the size of the QUBOs to the information-theoretic minimum. Experiments show that this significantly improves the results for MAX-k-SAT.
Recently, various normalization layers have been proposed to stabilize the training of deep neural networks. Among them, group normalization is a generalization of layer normalization and instance normalization by allowing a degree of freedom in the number of groups it uses. However, to determine the optimal number of groups, trial-and-error-based hyperparameter tuning is required, and such experiments are time-consuming. In this study, we discuss a reasonable method for setting the number of groups. First, we find that the number of groups influences the gradient behavior of the group normalization layer. Based on this observation, we derive the ideal number of groups, which calibrates the gradient scale to facilitate gradient descent optimization. Our proposed number of groups is theoretically grounded, architecture-aware, and can provide a proper value in a layer-wise manner for all layers. The proposed method exhibited improved performance over existing methods in numerous neural network architectures, tasks, and datasets.
Upper and lower bounds on absolute values of the eigenvalues of a matrix polynomial are well studied in the literature. As a continuation of this we derive, in this manuscript, bounds on absolute values of the eigenvalues of matrix rational functions using the following techniques/methods: the Bauer-Fike theorem, a Rouch$\text{\'e}$ theorem for matrix-valued functions and by associating a real rational function to the matrix rational function. Bounds are also obtained by converting the matrix rational function to a matrix polynomial. Comparison of these bounds when the coefficients are unitary matrices are brought out. Numerical calculations on a known problem are also verified.
Machine learning pipelines that include a combinatorial optimization layer can give surprisingly efficient heuristics for difficult combinatorial optimization problems. Three questions remain open: which architecture should be used, how should the parameters of the machine learning model be learned, and what performance guarantees can we expect from the resulting algorithms? Following the intuitions of geometric deep learning, we explain why equivariant layers should be used when designing such pipelines, and illustrate how to build such layers on routing, scheduling, and network design applications. We introduce a learning approach that enables to learn such pipelines when the training set contains only instances of the difficult optimization problem and not their optimal solutions, and show its numerical performance on our three applications. Finally, using tools from statistical learning theory, we prove a theorem showing the convergence speed of the estimator. As a corollary, we obtain that, if an approximation algorithm can be encoded by the pipeline for some parametrization, then the learned pipeline will retain the approximation ratio guarantee. On our network design problem, our machine learning pipeline has the approximation ratio guarantee of the best approximation algorithm known and the numerical efficiency of the best heuristic.
The primary aim of this paper is the derivation and the proof of a simple and tractable formula for the stray field energy in micromagnetic problems. The formula is based on an expansion in terms of Arar-Boulmezaoud functions. It remains valid even if the magnetization is not of constant magnitude or if the sample is not geometrically bounded. The paper continuous with a direct and important application which consists in a fast summation technique of the stray field energy. The convergence of this technique is established and its efficiency is proved by various numerical experiences.
The \emph{maximal $k$-edge-connected subgraphs} problem is a classical graph clustering problem studied since the 70's. Surprisingly, no non-trivial technique for this problem in weighted graphs is known: a very straightforward recursive-mincut algorithm with $\Omega(mn)$ time has remained the fastest algorithm until now. All previous progress gives a speed-up only when the graph is unweighted, and $k$ is small enough (e.g.~Henzinger~et~al.~(ICALP'15), Chechik~et~al.~(SODA'17), and Forster~et~al.~(SODA'20)). We give the first algorithm that breaks through the long-standing $\tilde{O}(mn)$-time barrier in \emph{weighted undirected} graphs. More specifically, we show a maximal $k$-edge-connected subgraphs algorithm that takes only $\tilde{O}(m\cdot\min\{m^{3/4},n^{4/5}\})$ time. As an immediate application, we can $(1+\epsilon)$-approximate the \emph{strength} of all edges in undirected graphs in the same running time. Our key technique is the first local cut algorithm with \emph{exact} cut-value guarantees whose running time depends only on the output size. All previous local cut algorithms either have running time depending on the cut value of the output, which can be arbitrarily slow in weighted graphs or have approximate cut guarantees.
Pourchet proved in 1971 that every nonnegative univariate polynomial with rational coefficients is a sum of five or fewer squares. Nonetheless, there are no known algorithms for constructing such a decomposition. The sole purpose of the present paper is to present a set of algorithms that decompose a given nonnegative polynomial into a sum of six (five under some unproven conjecture or when allowing weights) squares of polynomials. Moreover, we prove that the binary complexity can be expressed polynomially in terms of classical operations of computer algebra and algorithmic number theory.
Many standard linear algebra problems can be solved on a quantum computer by using recently developed quantum linear algebra algorithms that make use of block encodings and quantum eigenvalue/singular value transformations. A block encoding embeds a properly scaled matrix of interest A in a larger unitary transformation U that can be decomposed into a product of simpler unitaries and implemented efficiently on a quantum computer. Although quantum algorithms can potentially achieve exponential speedup in solving linear algebra problems compared to the best classical algorithm, such gain in efficiency ultimately hinges on our ability to construct an efficient quantum circuit for the block encoding of A, which is difficult in general, and not trivial even for well-structured sparse matrices. In this paper, we give a few examples on how efficient quantum circuits can be explicitly constructed for some well-structured sparse matrices, and discuss a few strategies used in these constructions. We also provide implementations of these quantum circuits in MATLAB.