Modeling the preferences of agents over a set of alternatives is a principal concern in many areas. The dominant approach has been to find a single reward/utility function with the property that alternatives yielding higher rewards are preferred over alternatives yielding lower rewards. However, in many settings, preferences are based on multiple, often competing, objectives; a single reward function is not adequate to represent such preferences. This paper proposes a method for inferring multi-objective reward-based representations of an agent's observed preferences. We model the agent's priorities over different objectives as entering lexicographically, so that objectives with lower priorities matter only when the agent is indifferent with respect to objectives with higher priorities. We offer two example applications in healthcare, one inspired by cancer treatment, the other inspired by organ transplantation, to illustrate how the lexicographically-ordered rewards we learn can provide a better understanding of a decision-maker's preferences and help improve policies when used in reinforcement learning.
Process synthesis experiences a disruptive transformation accelerated by digitization and artificial intelligence. We propose a reinforcement learning algorithm for chemical process design based on a state-of-the-art actor-critic logic. Our proposed algorithm represents chemical processes as graphs and uses graph convolutional neural networks to learn from process graphs. In particular, the graph neural networks are implemented within the agent architecture to process the states and make decisions. Moreover, we implement a hierarchical and hybrid decision-making process to generate flowsheets, where unit operations are placed iteratively as discrete decisions and corresponding design variables are selected as continuous decisions. We demonstrate the potential of our method to design economically viable flowsheets in an illustrative case study comprising equilibrium reactions, azeotropic separation, and recycles. The results show quick learning in discrete, continuous, and hybrid action spaces. Due to the flexible architecture of the proposed reinforcement learning agent, the method is predestined to include large action-state spaces and an interface to process simulators in future research.
Any reinforcement learning system must be able to identify which past events contributed to observed outcomes, a problem known as credit assignment. A common solution to this problem is to use an eligibility trace to assign credit to recency-weighted set of experienced events. However, in many realistic tasks, the set of recently experienced events are only one of the many possible action events that could have preceded the current outcome. This suggests that reinforcement learning can be made more efficient by allowing credit assignment to any viable preceding state, rather than only those most recently experienced. Accordingly, we examine ``Predecessor Features'', the fully bootstrapped version of van Hasselt's ``Expected Trace'', an algorithm that achieves this richer form of credit assignment. By maintaining a representation that approximates the expected sum of past occupancies, this algorithm allows temporal difference (TD) errors to be propagated accurately to a larger number of predecessor states than conventional methods, greatly improving learning speed. The algorithm can also be naturally extended from tabular state representation to feature representations allowing for increased performance on a wide range of environments. We demonstrate several use cases for Predecessor Features and compare its performance with other approaches.
Manufacturing companies face challenges when it comes to quickly adapting their production control to fluctuating demands or changing requirements. Control approaches that encapsulate production functions as services have shown to be promising in order to increase the flexibility of Cyber-Physical Production Systems. But an existing challenge of such approaches is finding a production plan based on provided functionalities for a demanded product, especially when there is no direct (i.e., syntactic) match between demanded and provided functions. While there is a variety of approaches to production planning, flexible production poses specific requirements that are not covered by existing research. In this contribution, we first capture these requirements for flexible production environments. Afterwards, an overview of current Artificial Intelligence approaches that can be utilized in order to overcome the aforementioned challenges is given. For this purpose, we focus on planning algorithms, but also consider models of production systems that can act as inputs to these algorithms. Approaches from both symbolic AI planning as well as approaches based on Machine Learning are discussed and eventually compared against the requirements. Based on this comparison, a research agenda is derived.
The recent state of the art on monocular 3D face reconstruction from image data has made some impressive advancements, thanks to the advent of Deep Learning. However, it has mostly focused on input coming from a single RGB image, overlooking the following important factors: a) Nowadays, the vast majority of facial image data of interest do not originate from single images but rather from videos, which contain rich dynamic information. b) Furthermore, these videos typically capture individuals in some form of verbal communication (public talks, teleconferences, audiovisual human-computer interactions, interviews, monologues/dialogues in movies, etc). When existing 3D face reconstruction methods are applied in such videos, the artifacts in the reconstruction of the shape and motion of the mouth area are often severe, since they do not match well with the speech audio. To overcome the aforementioned limitations, we present the first method for visual speech-aware perceptual reconstruction of 3D mouth expressions. We do this by proposing a "lipread" loss, which guides the fitting process so that the elicited perception from the 3D reconstructed talking head resembles that of the original video footage. We demonstrate that, interestingly, the lipread loss is better suited for 3D reconstruction of mouth movements compared to traditional landmark losses, and even direct 3D supervision. Furthermore, the devised method does not rely on any text transcriptions or corresponding audio, rendering it ideal for training in unlabeled datasets. We verify the efficiency of our method through exhaustive objective evaluations on three large-scale datasets, as well as subjective evaluation with two web-based user studies.
Free/Open Source Software (FOSS) enables large-scale reuse of preexisting software components. The main drawback is increased complexity in software supply chain management. A common approach to tame such complexity is automated open source compliance, which consists in automating the verication of adherence to various open source management best practices about license obligation fulllment, vulnerability tracking, software composition analysis, and nearby concerns.We consider the problem of auditing a source code base to determine which of its parts have been published before, which is an important building block of automated open source compliance toolchains. Indeed, if source code allegedly developed in house is recognized as having been previously published elsewhere, alerts should be raised to investigate where it comes from and whether this entails that additional obligations shall be fullled before product shipment.We propose an ecient approach for prior publication identication that relies on a knowledge base of known source code artifacts linked together in a global Merkle direct acyclic graph and a dedicated discovery protocol. We introduce swh-scanner, a source code scanner that realizes the proposed approach in practice using as knowledge base Software Heritage, the largest public archive of source code artifacts. We validate experimentally the proposed approach, showing its eciency in both abstract (number of queries) and concrete terms (wall-clock time), performing benchmarks on 16 845 real-world public code bases of various sizes, from small to very large.
Novel view synthesis is a long-standing problem. In this work, we consider a variant of the problem where we are given only a few context views sparsely covering a scene or an object. The goal is to predict novel viewpoints in the scene, which requires learning priors. The current state of the art is based on Neural Radiance Field (NeRF), and while achieving impressive results, the methods suffer from long training times as they require evaluating millions of 3D point samples via a neural network for each image. We propose a 2D-only method that maps multiple context views and a query pose to a new image in a single pass of a neural network. Our model uses a two-stage architecture consisting of a codebook and a transformer model. The codebook is used to embed individual images into a smaller latent space, and the transformer solves the view synthesis task in this more compact space. To train our model efficiently, we introduce a novel branching attention mechanism that allows us to use the same model not only for neural rendering but also for camera pose estimation. Experimental results on real-world scenes show that our approach is competitive compared to NeRF-based methods while not reasoning explicitly in 3D, and it is faster to train.
Detecting and mitigating harmful biases in modern language models are widely recognized as crucial, open problems. In this paper, we take a step back and investigate how language models come to be biased in the first place. We use a relatively small language model, using the LSTM architecture trained on an English Wikipedia corpus. With full access to the data and to the model parameters as they change during every step while training, we can map in detail how the representation of gender develops, what patterns in the dataset drive this, and how the model's internal state relates to the bias in a downstream task (semantic textual similarity). We find that the representation of gender is dynamic and identify different phases during training. Furthermore, we show that gender information is represented increasingly locally in the input embeddings of the model and that, as a consequence, debiasing these can be effective in reducing the downstream bias. Monitoring the training dynamics, allows us to detect an asymmetry in how the female and male gender are represented in the input embeddings. This is important, as it may cause naive mitigation strategies to introduce new undesirable biases. We discuss the relevance of the findings for mitigation strategies more generally and the prospects of generalizing our methods to larger language models, the Transformer architecture, other languages and other undesirable biases.
Visual recognition is currently one of the most important and active research areas in computer vision, pattern recognition, and even the general field of artificial intelligence. It has great fundamental importance and strong industrial needs. Deep neural networks (DNNs) have largely boosted their performances on many concrete tasks, with the help of large amounts of training data and new powerful computation resources. Though recognition accuracy is usually the first concern for new progresses, efficiency is actually rather important and sometimes critical for both academic research and industrial applications. Moreover, insightful views on the opportunities and challenges of efficiency are also highly required for the entire community. While general surveys on the efficiency issue of DNNs have been done from various perspectives, as far as we are aware, scarcely any of them focused on visual recognition systematically, and thus it is unclear which progresses are applicable to it and what else should be concerned. In this paper, we present the review of the recent advances with our suggestions on the new possible directions towards improving the efficiency of DNN-related visual recognition approaches. We investigate not only from the model but also the data point of view (which is not the case in existing surveys), and focus on three most studied data types (images, videos and points). This paper attempts to provide a systematic summary via a comprehensive survey which can serve as a valuable reference and inspire both researchers and practitioners who work on visual recognition problems.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
Multimodal sentiment analysis is a very actively growing field of research. A promising area of opportunity in this field is to improve the multimodal fusion mechanism. We present a novel feature fusion strategy that proceeds in a hierarchical fashion, first fusing the modalities two in two and only then fusing all three modalities. On multimodal sentiment analysis of individual utterances, our strategy outperforms conventional concatenation of features by 1%, which amounts to 5% reduction in error rate. On utterance-level multimodal sentiment analysis of multi-utterance video clips, for which current state-of-the-art techniques incorporate contextual information from other utterances of the same clip, our hierarchical fusion gives up to 2.4% (almost 10% error rate reduction) over currently used concatenation. The implementation of our method is publicly available in the form of open-source code.