Networks representation aims to encode vertices into a low-dimensional space, while preserving the original network structures and properties. Most existing methods focus on static network structure without considering temporal dynamics. However, in real world, most networks (e.g., social and biological networks) are dynamic in nature and are constantly evolving over time. Such temporal dynamics are critical in representations learning, especially for predicting dynamic networks behaviors. To this end, a Deep Hawkes Process based Dynamic Networks Representation algorithm (DHPrep) is proposed in this paper, which is capable of capturing temporal dynamics of dynamic networks. Specifically, DHPrep incorporates both structural information and temporal dynamics to learn vertices representations that can model the edge formation process for a vertex pair, where the structural information is used to capture the historical impact from their neighborhood, and the temporal dynamics utilize this historical information and apply Hawkes point process to model the edges formation process. Moreover, a temporal smoother is further imposed to ensure the representations evolve smoothly over time. To evaluate the effectiveness of DHPrep, extensive experiments are carried out using four real-world datasets. Experimental results reveal that our DHPrep algorithm outperforms state-of-the-art baseline methods in various tasks including link prediction and vertices recommendation.
Clustering based on vibration responses, such as transmissibility functions (TFs), is promising in structural anomaly detection, but most existing approaches struggle with determining the optimal cluster number and handling high-dimensional streaming data, while their shallow structures also make them sensitive to manually-engineered feature quality. To bridge this gap, this work proposes the Dirichlet process-deep generative model-integrated incremental learning (DPGIIL) for clustering by combining the advantages of deep generative models (DGMs) in representation learning and the Dirichlet process mixture model (DPMM) in identifying distinct patterns in observed data. By introducing a DPMM prior into the latent space of DGMs, DPGIIL automatically captures dissimilarities in extracted latent representations, enabling both generative modeling and clustering. Within the context of variational Bayesian inference, a lower bound on the log marginal likelihood of DPGIIL, tighter than the evidence lower bound given sufficient training data, is derived analytically, which enables the joint optimization of DGM and DPMM parameters, thereby allowing the DPMM to regularize the DGM's feature extraction process. Additionally, a greedy split-merge scheme-based coordinate ascent variational inference method is devised to accelerate the optimization. The summary statistics of the DPMM, along with the network parameters, are used to retain information about previous data for incremental learning. Notably, this study uses variational autoencoder (VAE) within DPGIIL as an illustrative example, while this framework is adaptable to other DGMs. Two case studies show that the proposed method outperforms some state-of-the-art approaches in structural anomaly detection and clustering, while also dynamically generating new clusters to indicate the emergence of new structural conditions for online monitoring.
Text-based adversarial guidance using a negative prompt has emerged as a widely adopted approach to steer diffusion models away from producing undesired concepts. While useful, performing adversarial guidance using text alone can be insufficient to capture complex visual concepts or avoid specific visual elements like copyrighted characters. In this paper, for the first time we explore an alternate modality in this direction by performing adversarial guidance directly using visual features from a reference image or other images in a batch. We introduce negative token merging (NegToMe), a simple but effective training-free approach which performs adversarial guidance through images by selectively pushing apart matching visual features between reference and generated images during the reverse diffusion process. By simply adjusting the used reference, NegToMe enables a diverse range of applications. Notably, when using other images in same batch as reference, we find that NegToMe significantly enhances output diversity (e.g., racial, gender, visual) by guiding features of each image away from others. Similarly, when used w.r.t. copyrighted reference images, NegToMe reduces visual similarity to copyrighted content by 34.57%. NegToMe is simple to implement using just few-lines of code, uses only marginally higher (<4%) inference time and is compatible with different diffusion architectures, including those like Flux, which don't natively support the use of a negative prompt. Code is available at //negtome.github.io
Large-scale, pre-trained neural networks have demonstrated strong capabilities in various tasks, including zero-shot image segmentation. To identify concrete objects in complex scenes, humans instinctively rely on deictic descriptions in natural language, i.e., referring to something depending on the context such as "The object that is on the desk and behind the cup.". However, deep learning approaches cannot reliably interpret such deictic representations due to their lack of reasoning capabilities in complex scenarios. To remedy this issue, we propose DeiSAM -- a combination of large pre-trained neural networks with differentiable logic reasoners -- for deictic promptable segmentation. Given a complex, textual segmentation description, DeiSAM leverages Large Language Models (LLMs) to generate first-order logic rules and performs differentiable forward reasoning on generated scene graphs. Subsequently, DeiSAM segments objects by matching them to the logically inferred image regions. As part of our evaluation, we propose the Deictic Visual Genome (DeiVG) dataset, containing paired visual input and complex, deictic textual prompts. Our empirical results demonstrate that DeiSAM is a substantial improvement over purely data-driven baselines for deictic promptable segmentation.
Making multi-camera visual SLAM systems easier to set up and more robust to the environment is always one of the focuses of vision robots. Existing monocular and binocular vision SLAM systems have narrow FoV and are fragile in textureless environments with degenerated accuracy and limited robustness. Thus multi-camera SLAM systems are gaining attention because they can provide redundancy for texture degeneration with wide FoV. However, current multi-camera SLAM systems face massive data processing pressure and elaborately designed camera configurations, leading to estimation failures for arbitrarily arranged multi-camera systems. To address these problems, we propose a generic visual odometry for arbitrarily arranged multi-cameras, which can achieve metric-scale state estimation with high flexibility in the cameras' arrangement. Specifically, we first design a learning-based feature extraction and tracking framework to shift the pressure of CPU processing of multiple video streams. Then we use the rigid constraints between cameras to estimate the metric scale poses for robust SLAM system initialization. Finally, we fuse the features of the multi-cameras in the SLAM back-end to achieve robust pose estimation and online scale optimization. Additionally, multi-camera features help improve the loop detection for pose graph optimization. Experiments on KITTI-360 and MultiCamData datasets validate the robustness of our method over arbitrarily placed cameras. Compared with other stereo and multi-camera visual SLAM systems, our method obtains higher pose estimation accuracy with better generalization ability. Our codes and online demos are available at \url{//github.com/JunhaoWang615/MCVO}
We present TokenFlow, a novel unified image tokenizer that bridges the long-standing gap between multimodal understanding and generation. Prior research attempt to employ a single reconstruction-targeted Vector Quantization (VQ) encoder for unifying these two tasks. We observe that understanding and generation require fundamentally different granularities of visual information. This leads to a critical trade-off, particularly compromising performance in multimodal understanding tasks. TokenFlow addresses this challenge through an innovative dual-codebook architecture that decouples semantic and pixel-level feature learning while maintaining their alignment via a shared mapping mechanism. This design enables direct access to both high-level semantic representations crucial for understanding tasks and fine-grained visual features essential for generation through shared indices. Our extensive experiments demonstrate TokenFlow's superiority across multiple dimensions. Leveraging TokenFlow, we demonstrate for the first time that discrete visual input can surpass LLaVA-1.5 13B in understanding performance, achieving a 7.2\% average improvement. For image reconstruction, we achieve a strong FID score of 0.63 at 384*384 resolution. Moreover, TokenFlow establishes state-of-the-art performance in autoregressive image generation with a GenEval score of 0.55 at 256*256 resolution, achieving comparable results to SDXL.
Convolutional neural networks have made significant progresses in edge detection by progressively exploring the context and semantic features. However, local details are gradually suppressed with the enlarging of receptive fields. Recently, vision transformer has shown excellent capability in capturing long-range dependencies. Inspired by this, we propose a novel transformer-based edge detector, \emph{Edge Detection TransformER (EDTER)}, to extract clear and crisp object boundaries and meaningful edges by exploiting the full image context information and detailed local cues simultaneously. EDTER works in two stages. In Stage I, a global transformer encoder is used to capture long-range global context on coarse-grained image patches. Then in Stage II, a local transformer encoder works on fine-grained patches to excavate the short-range local cues. Each transformer encoder is followed by an elaborately designed Bi-directional Multi-Level Aggregation decoder to achieve high-resolution features. Finally, the global context and local cues are combined by a Feature Fusion Module and fed into a decision head for edge prediction. Extensive experiments on BSDS500, NYUDv2, and Multicue demonstrate the superiority of EDTER in comparison with state-of-the-arts.
Graph neural networks provide a powerful toolkit for embedding real-world graphs into low-dimensional spaces according to specific tasks. Up to now, there have been several surveys on this topic. However, they usually lay emphasis on different angles so that the readers can not see a panorama of the graph neural networks. This survey aims to overcome this limitation, and provide a comprehensive review on the graph neural networks. First of all, we provide a novel taxonomy for the graph neural networks, and then refer to up to 400 relevant literatures to show the panorama of the graph neural networks. All of them are classified into the corresponding categories. In order to drive the graph neural networks into a new stage, we summarize four future research directions so as to overcome the facing challenges. It is expected that more and more scholars can understand and exploit the graph neural networks, and use them in their research community.
A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.