In this paper, an abstract framework for the error analysis of discontinuous finite element method is developed for the distributed and Neumann boundary control problems governed by the stationary Stokes equation with control constraints. {\it A~priori} error estimates of optimal order are derived for velocity and pressure in the energy norm and the $L^2$-norm, respectively. Moreover, a reliable and efficient {\it a~posteriori} error estimator is derived. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. In particular, we consider the abstract results with suitable stable pairs of velocity and pressure spaces like as the lowest-order Crouzeix-Raviart finite element and piecewise constant spaces, piecewise linear and constant finite element spaces. The theoretical results are illustrated by the numerical experiments.
We study a fourth-order div problem and its approximation by the discontinuous Petrov-Galerkin method with optimal test functions. We present two variants, based on first and second-order systems. In both cases we prove well-posedness of the formulation and quasi-optimal convergence of the approximation. Our analysis includes the fully-discrete schemes with approximated test functions, for general dimension and polynomial degree in the first-order case, and for two dimensions and lowest-order approximation in the second-order case. Numerical results illustrate the performance for quasi-uniform and adaptively refined meshes.
Let $X$ be a random variable with unknown mean and finite variance. We present a new estimator of the mean of $X$ that is robust with respect to the possible presence of outliers in the sample, provides tight sub-Gaussian deviation guarantees without any additional assumptions on the shape or tails of the distribution, and moreover is asymptotically efficient. This is the first estimator that provably combines all these qualities in one package. Our construction is inspired by robustness properties possessed by the self-normalized sums. Theoretical findings are supplemented by numerical simulations highlighting strong performance of the proposed estimator in comparison with previously known techniques.
A high-order finite element method is proposed to solve the nonlinear convection-diffusion equation on a time-varying domain whose boundary is implicitly driven by the solution of the equation. The method is semi-implicit in the sense that the boundary is traced explicitly with a high-order surface-tracking algorithm, while the convection-diffusion equation is solved implicitly with high-order backward differentiation formulas and fictitious-domain finite element methods. By two numerical experiments for severely deforming domains, we show that optimal convergence orders are obtained in energy norm for third-order and fourth-order methods.
We develop a lowest-order nonconforming virtual element method for planar linear elasticity, which can be viewed as an extension of the idea in Falk (1991) to the virtual element method (VEM), with the family of polygonal meshes satisfying a very general geometric assumption. The method is shown to be uniformly convergent for the nearly incompressible case with optimal rates of convergence. The crucial step is to establish the discrete Korn's inequality, yielding the coercivity of the discrete bilinear form. We also provide a unified locking-free scheme both for the conforming and nonconforming VEMs in the lowest order case. Numerical results validate the feasibility and effectiveness of the proposed numerical algorithms.
We propose a $k^{\rm th}$-order unfitted finite element method ($2\le k\le 4$) to solve the moving interface problem of the Oseen equations. Thorough error estimates for the discrete solutions are presented by considering errors from interface-tracking, time integration, and spatial discretization. In literatures on time-dependent Stokes interface problems, error estimates for the discrete pressure are usually sub-optimal, namely, $(k-1)^{\rm th}$-order, under the $L^2$-norm. We have obtained a $(k-1)^{\rm th}$-order error estimate for the discrete pressure under the $H^1$-norm. Numerical experiments for a severely deforming interface show that optimal convergence orders are obtained for $k = 3$ and $4$.
It was recently shown that under smoothness conditions, the squared Wasserstein distance between two distributions could be efficiently computed with appealing statistical error upper bounds. However, rather than the distance itself, the object of interest for applications such as generative modeling is the underlying optimal transport map. Hence, computational and statistical guarantees need to be obtained for the estimated maps themselves. In this paper, we propose the first tractable algorithm for which the statistical $L^2$ error on the maps nearly matches the existing minimax lower-bounds for smooth map estimation. Our method is based on solving the semi-dual formulation of optimal transport with an infinite-dimensional sum-of-squares reformulation, and leads to an algorithm which has dimension-free polynomial rates in the number of samples, with potentially exponentially dimension-dependent constants.
This paper deals with a special type of Lyapunov functions, namely the solution of Zubov's equation. Such a function can be used to characterize the domain of attraction for systems of ordinary differential equations. We derive and prove an integral form solution to Zubov's equation. For numerical computation, we develop two data-driven methods. One is based on the integration of an augmented system of differential equations; and the other one is based on deep learning. The former is effective for systems with a relatively low state space dimension and the latter is developed for high dimensional problems. The deep learning method is applied to a New England 10-generator power system model. We prove that a neural network approximation exists for the Lyapunov function of power systems such that the approximation error is a cubic polynomial of the number of generators. The error convergence rate as a function of n, the number of neurons, is proved.
The virtual element method (VEM) is a Galerkin approximation method that extends the finite element method to polytopal meshes. In this paper, we present two different conforming virtual element formulations for the numerical approximation of the Stokes problem that work on polygonal meshes.The velocity vector field is approximated in the virtual element spaces of the two formulations, while the pressure variable is approximated through discontinuous polynomials. Both formulations are inf-sup stable and convergent with optimal convergence rates in the $L^2$ and energy norm. We assess the effectiveness of these numerical approximations by investigating their behavior on a representative benchmark problem. The observed convergence rates are in accordance with the theoretical expectations and a weak form of the zero-divergence constraint is satisfied at the machine precision level.
The Ensemble Kalman Filter (EnKF) belongs to the class of iterative particle filtering methods and can be used for solving control--to--observable inverse problems. In this context, the EnKF is known as Ensemble Kalman Inversion (EKI). In recent years several continuous limits in the number of iteration and particles have been performed in order to study properties of the method. In particular, a one--dimensional linear stability analysis reveals possible drawbacks in the phase space of moments provided by the continuous limits of the EKI, but observed also in the multi--dimensional setting. In this work we address this issue by introducing a stabilization of the dynamics which leads to a method with globally asymptotically stable solutions. We illustrate the performance of the stabilized version by using test inverse problems from the literature and comparing it with the classical continuous limit formulation of the method.
This paper develops a lowest-order conforming virtual element method for planar linear elasticity in the displacement/traction formulation, which can be viewed as an extension of the idea in Brenner \& Sung (1992) to the virtual element method, with the family of polygonal meshes satisfying a very general geometric assumption. The method is shown to be uniformly convergent with the Lam\'{e} constant with the optimal rates of convergence.