亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Studying the properties of stochastic noise to optimize complex non-convex functions has been an active area of research in the field of machine learning. Prior work has shown that the noise of stochastic gradient descent improves optimization by overcoming undesirable obstacles in the landscape. Moreover, injecting artificial Gaussian noise has become a popular idea to quickly escape saddle points. Indeed, in the absence of reliable gradient information, the noise is used to explore the landscape, but it is unclear what type of noise is optimal in terms of exploration ability. In order to narrow this gap in our knowledge, we study a general type of continuous-time non-Markovian process, based on fractional Brownian motion, that allows for the increments of the process to be correlated. This generalizes processes based on Brownian motion, such as the Ornstein-Uhlenbeck process. We demonstrate how to discretize such processes which gives rise to the new algorithm fPGD. This method is a generalization of the known algorithms PGD and Anti-PGD. We study the properties of fPGD both theoretically and empirically, demonstrating that it possesses exploration abilities that, in some cases, are favorable over PGD and Anti-PGD. These results open the field to novel ways to exploit noise for training machine learning models.

相關內容

In the modern paradigm of federated learning, a large number of users are involved in a global learning task, in a collaborative way. They alternate local computations and two-way communication with a distant orchestrating server. Communication, which can be slow and costly, is the main bottleneck in this setting. To reduce the communication load and therefore accelerate distributed gradient descent, two strategies are popular: 1) communicate less frequently; that is, perform several iterations of local computations between the communication rounds; and 2) communicate compressed information instead of full-dimensional vectors. In this paper, we propose the first algorithm for distributed optimization and federated learning, which harnesses these two strategies jointly and converges linearly to an exact solution, with a doubly accelerated rate: our algorithm benefits from the two acceleration mechanisms provided by local training and compression, namely a better dependency on the condition number of the functions and on the dimension of the model, respectively.

The area under the ROC curve (AUC) is one of the most widely used performance measures for classification models in machine learning. However, it summarizes the true positive rates (TPRs) over all false positive rates (FPRs) in the ROC space, which may include the FPRs with no practical relevance in some applications. The partial AUC, as a generalization of the AUC, summarizes only the TPRs over a specific range of the FPRs and is thus a more suitable performance measure in many real-world situations. Although partial AUC optimization in a range of FPRs had been studied, existing algorithms are not scalable to big data and not applicable to deep learning. To address this challenge, we cast the problem into a non-smooth difference-of-convex (DC) program for any smooth predictive functions (e.g., deep neural networks), which allowed us to develop an efficient approximated gradient descent method based on the Moreau envelope smoothing technique, inspired by recent advances in non-smooth DC optimization. To increase the efficiency of large data processing, we used an efficient stochastic block coordinate update in our algorithm. Our proposed algorithm can also be used to minimize the sum of ranked range loss, which also lacks efficient solvers. We established a complexity of $\tilde O(1/\epsilon^6)$ for finding a nearly $\epsilon$-critical solution. Finally, we numerically demonstrated the effectiveness of our proposed algorithms for both partial AUC maximization and sum of ranked range loss minimization.

The work is devoted to the construction of a new type of intervals -- functional intervals. These intervals are built on the idea of expanding boundaries from numbers to functions. Functional intervals have shown themselves to be promising for further study and use, since they have more rich algebraic properties compared to classical intervals lamy. In the work, linear functional arithmetic was constructed from one variable. This arithmetic was applied to solve such problems of interval analysis, as minimization of a function on an interval and finding zeros of a function on an interval. Results of numerical experiments for linear functional arithmetic showed a high order of convergence and a higher speed the growth of algorithms when using intervals of a new type, despite the fact that the calculations did not use information about derivative function. Also in the work, a modification of the minimization algorithms functions of several variables, based on the use of the function rational intervals of several variables. As a result, it was Improved speedup of algorithms, but only up to a certain number of unknowns.

The Unsplittable Flow on a Path (UFP) problem has garnered considerable attention as a challenging combinatorial optimization problem with notable practical implications. Steered by its pivotal applications in power engineering, the present work formulates a novel generalization of UFP, wherein demands and capacities in the input instance are monotone step functions over the set of edges. As an initial step towards tackling this generalization, we draw on and extend ideas from prior research to devise a quasi-polynomial time approximation scheme (QPTAS) under the premise that the demands and capacities lie in a quasi-polynomial range. Second, retaining the same assumption, an efficient logarithmic approximation is introduced for the single-source variant of the problem. Finally, we round up the contributions by designing a (kind of) black-box reduction that, under some mild conditions, allows to translate LP-based approximation algorithms for the studied problem into their counterparts for the Alternating Current Optimal Power Flow (AC OPF) problem -- a fundamental workflow in operation and control of power systems.

Causal investigations in observational studies pose a great challenge in scientific research where randomized trials or intervention-based studies are not feasible. Leveraging Shannon's seminal work on information theory, we develop a causal discovery framework of "predictive asymmetry" for bivariate $(X, Y)$. Predictive asymmetry is a central concept in information geometric causal inference; it enables assessment of whether $X$ is a stronger predictor of $Y$ or vice-versa. We propose a new metric called the Asymmetric Mutual Information ($AMI$) and establish its key statistical properties. The $AMI$ is not only able to detect complex non-linear association patterns in bivariate data, but also is able to detect and quantify predictive asymmetry. Our proposed methodology relies on scalable non-parametric density estimation using fast Fourier transformation. The resulting estimation method is manyfold faster than the classical bandwidth-based density estimation, while maintaining comparable mean integrated squared error rates. We investigate key asymptotic properties of the $AMI$ methodology; a new data-splitting technique is developed to make statistical inference on predictive asymmetry using the $AMI$. We illustrate the performance of the $AMI$ methodology through simulation studies as well as multiple real data examples.

Bayesian nonparametric mixture models are common for modeling complex data. While these models are well-suited for density estimation, their application for clustering has some limitations. Miller and Harrison (2014) proved posterior inconsistency in the number of clusters when the true number of clusters is finite for Dirichlet process and Pitman--Yor process mixture models. In this work, we extend this result to additional Bayesian nonparametric priors such as Gibbs-type processes and finite-dimensional representations of them. The latter include the Dirichlet multinomial process and the recently proposed Pitman--Yor and normalized generalized gamma multinomial processes. We show that mixture models based on these processes are also inconsistent in the number of clusters and discuss possible solutions. Notably, we show that a post-processing algorithm introduced by Guha et al. (2021) for the Dirichlet process extends to more general models and provides a consistent method to estimate the number of components.

Stochastic versions of proximal methods have gained much attention in statistics and machine learning. These algorithms tend to admit simple, scalable forms, and enjoy numerical stability via implicit updates. In this work, we propose and analyze a stochastic version of the recently proposed proximal distance algorithm, a class of iterative optimization methods that recover a desired constrained estimation problem as a penalty parameter $\rho \rightarrow \infty$. By uncovering connections to related stochastic proximal methods and interpreting the penalty parameter as the learning rate, we justify heuristics used in practical manifestations of the proximal distance method, establishing their convergence guarantees for the first time. Moreover, we extend recent theoretical devices to establish finite error bounds and a complete characterization of convergence rates regimes. We validate our analysis via a thorough empirical study, also showing that unsurprisingly, the proposed method outpaces batch versions on popular learning tasks.

A new approach to calculating the finite Fourier transform is suggested throughout the process of this study. The idea that the series has been updated with the appropriate modification and purification, which serves as the basis for the study, and that this update functions as the basis for the investigation is the conceptual goal of this method, which was designed especially for the purpose of this study. It is provided here that this methodology, which was designed especially for the purpose of this study, has been updated with the appropriate modification and purification, which serves as the basis for the study, is provided here. This study also used this update as the premise to get started. In order for this approach to be successful, the starting point must be the presumption that the series has been appropriately purified and organized to the point where it can be considered adequate. The attributes of this series were discovered as a result of the work that was ordered to choose an acceptable application of the Fourier series, to apply it, and to conduct an analysis of it in relation to the finite Fourier transform. These qualities were determined this study. The results of this study provided a better understanding of the characteristics of this series.

Machine learning problems with multiple objective functions appear either in learning with multiple criteria where learning has to make a trade-off between multiple performance metrics such as fairness, safety and accuracy; or, in multi-task learning where multiple tasks are optimized jointly, sharing inductive bias between them. This problems are often tackled by the multi-objective optimization framework. However, existing stochastic multi-objective gradient methods and its variants (e.g., MGDA, PCGrad, CAGrad, etc.) all adopt a biased noisy gradient direction, which leads to degraded empirical performance. To this end, we develop a stochastic Multi-objective gradient Correction (MoCo) method for multi-objective optimization. The unique feature of our method is that it can guarantee convergence without increasing the batch size even in the non-convex setting. Simulations on multi-task supervised and reinforcement learning demonstrate the effectiveness of our method relative to state-of-the-art methods.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司