亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There is a bijection between odd prime dimensional qudit pure stabilizer states modulo invertible scalars and affine Lagrangian subspaces of finite dimensional symplectic $\mathbb{F}_p$-vector spaces. In the language of the stabilizer formalism, full rank stabilizer tableaus are exactly the bases for affine Lagrangian subspaces. This correspondence extends to an isomorphism of props where the composition of stabilizer circuits becomes the relational composition of affine subspaces and the tensor product becomes the direct sum. In this paper, we extend this correspondence between stabilizer circuits and tableaus to the mixed setting; by regarding stabilizer codes as affine coisotropic susbspaces (again only in odd prime qudit dimension/for qubit CSS codes). We show that by splitting the projector for a stabilizer code we recover the error detection protocol and the error correction protocol with affine classical processing power.

相關內容

This paper is concerned with function reconstruction from samples. The sampling points used in several approaches are (1) structured points connected with fast algorithms or (2) unstructured points coming from, e.g., an initial random draw to achieve an improved information complexity. We connect both approaches and propose a subsampling of structured points in an offline step. In particular, we start with structured quadrature points (QMC), which provide stable $L_2$ reconstruction properties. The subsampling procedure consists of a computationally inexpensive random step followed by a deterministic procedure to further reduce the number of points while keeping its information. In these points functions (belonging to a RKHS of bounded functions) will be sampled and reconstructed from whilst achieving state of the art error decay. Our method is dimension-independent and is applicable as soon as we know some initial quadrature points. We apply our general findings on the $d$-dimensional torus to subsample rank-1 lattices, where it is known that full rank-1 lattices lose half the optimal order of convergence (expressed in terms of the size of the lattice). In contrast to that, our subsampled version regains the optimal rate since many of the lattice points are not needed. Moreover, we utilize fast and memory efficient Fourier algorithms in order to compute the approximation. Numerical experiments in several dimensions support our findings.

Orienting the edges of an undirected graph such that the resulting digraph satisfies some given constraints is a classical problem in graph theory, with multiple algorithmic applications. In particular, an $st$-orientation orients each edge of the input graph such that the resulting digraph is acyclic, and it contains a single source $s$ and a single sink $t$. Computing an $st$-orientation of a graph can be done efficiently, and it finds notable applications in graph algorithms and in particular in graph drawing. On the other hand, finding an $st$-orientation with at most $k$ transitive edges is more challenging and it was recently proven to be NP-hard already when $k=0$. We strengthen this result by showing that the problem remains NP-hard even for graphs of bounded diameter, and for graphs of bounded vertex degree. These computational lower bounds naturally raise the question about which structural parameters can lead to tractable parameterizations of the problem. Our main result is a fixed-parameter tractable algorithm parameterized by treewidth.

In this work we make progress in understanding the relationship between learning models with access to entangled, separable and statistical measurements in the quantum statistical query (QSQ) model. To this end, we show the following results. $\textbf{Entangled versus separable measurements.}$ The goal here is to learn an unknown $f$ from the concept class $C\subseteq \{f:\{0,1\}^n\rightarrow [k]\}$ given copies of $\frac{1}{\sqrt{2^n}}\sum_x \vert x,f(x)\rangle$. We show that, if $T$ copies suffice to learn $f$ using entangled measurements, then $O(nT^2)$ copies suffice to learn $f$ using just separable measurements. $\textbf{Entangled versus statistical measurements}$ The goal here is to learn a function $f \in C$ given access to separable measurements and statistical measurements. We exhibit a class $C$ that gives an exponential separation between QSQ learning and quantum learning with entangled measurements (even in the presence of noise). This proves the "quantum analogue" of the seminal result of Blum et al. [BKW'03]. that separates classical SQ and PAC learning with classification noise. $\textbf{QSQ lower bounds for learning states.}$ We introduce a quantum statistical query dimension (QSD), which we use to give lower bounds on the QSQ learning. With this we prove superpolynomial QSQ lower bounds for testing purity, shadow tomography, Abelian hidden subgroup problem, degree-$2$ functions, planted bi-clique states and output states of Clifford circuits of depth $\textsf{polylog}(n)$. $\textbf{Further applications.}$ We give and $\textit{unconditional}$ separation between weak and strong error mitigation and prove lower bounds for learning distributions in the QSQ model. Prior works by Quek et al. [QFK+'22], Hinsche et al. [HIN+'22], and Nietner et al. [NIS+'23] proved the analogous results $\textit{assuming}$ diagonal measurements and our work removes this assumption.

We define the complexity of a continuous-time linear system to be the minimum number of bits required to describe its forward increments to a desired level of fidelity, and compute this quantity using the rate distortion function of a Gaussian source of uncertainty in those increments. The complexity of a linear system has relevance in control-communications contexts requiring local and dynamic decision-making based on sampled data representations. We relate this notion of complexity to the design of attention-varying controllers, and demonstrate a novel methodology for constructing source codes via the endpoint maps of so-called emulating systems, with potential for non-parametric, data-based simulation and analysis of unknown dynamical systems.

Most of the existing works on provable guarantees for low-rank matrix completion algorithms rely on some unrealistic assumptions such that matrix entries are sampled randomly or the sampling pattern has a specific structure. In this work, we establish theoretical guarantee for the exact and approximate low-rank matrix completion problems which can be applied to any deterministic sampling schemes. For this, we introduce a graph having observed entries as its edge set, and investigate its graph properties involving the performance of the standard constrained nuclear norm minimization algorithm. We theoretically and experimentally show that the algorithm can be successful as the observation graph is well-connected and has similar node degrees. Our result can be viewed as an extension of the works by Bhojanapalli and Jain [2014] and Burnwal and Vidyasagar [2020], in which the node degrees of the observation graph were assumed to be the same. In particular, our theory significantly improves their results when the underlying matrix is symmetric.

A $k$-subcolouring of a graph $G$ is a function $f:V(G) \to \{0,\ldots,k-1\}$ such that the set of vertices coloured $i$ induce a disjoint union of cliques. The subchromatic number, $\chi_{\textrm{sub}}(G)$, is the minimum $k$ such that $G$ admits a $k$-subcolouring. Ne\v{s}et\v{r}il, Ossona de Mendez, Pilipczuk, and Zhu (2020), recently raised the problem of finding tight upper bounds for $\chi_{\textrm{sub}}(G^2)$ when $G$ is planar. We show that $\chi_{\textrm{sub}}(G^2)\le 43$ when $G$ is planar, improving their bound of 135. We give even better bounds when the planar graph $G$ has larger girth. Moreover, we show that $\chi_{\textrm{sub}}(G^{3})\le 95$, improving the previous bound of 364. For these we adapt some recent techniques of Almulhim and Kierstead (2022), while also extending the decompositions of triangulated planar graphs of Van den Heuvel, Ossona de Mendez, Quiroz, Rabinovich and Siebertz (2017), to planar graphs of arbitrary girth. Note that these decompositions are the precursors of the graph product structure theorem of planar graphs. We give improved bounds for $\chi_{\textrm{sub}}(G^p)$ for all $p$, whenever $G$ has bounded treewidth, bounded simple treewidth, bounded genus, or excludes a clique or biclique as a minor. For this we introduce a family of parameters which form a gradation between the strong and the weak colouring numbers. We give upper bounds for these parameters for graphs coming from such classes. Finally, we give a 2-approximation algorithm for the subchromatic number of graphs coming from any fixed class with bounded layered cliquewidth. In particular, this implies a 2-approximation algorithm for the subchromatic number of powers $G^p$ of graphs coming from any fixed class with bounded layered treewidth (such as the class of planar graphs). This algorithm works even if the power $p$ and the graph $G$ is unknown.

Copulas have become very popular as a statistical model to represent dependence structures between multiple variables in many applications. Given a finite number of constraints in advance, the minimum information copula is the closest to the uniform copula when measured in Kullback-Leibler divergence. For these constraints, the expectation of moments such as Spearman's rho are mostly considered in previous researches. These copulas are obtained as the optimal solution to convex programming. On the other hand, other types of correlation have not been studied previously in this context. In this paper, we present MICK, a novel minimum information copula where Kendall's rank correlation is specified. Although this copula is defined as the solution to non-convex optimization problem, we show that the uniqueness of this copula is guaranteed when correlation is small enough. We also show that the family of checkerboard copulas admits representation as non-orthogonal vector space. In doing so, we observe local and global dependencies of MICK, thereby unifying results on minimum information copulas.

We investigate error bounds for numerical solutions of divergence structure linear elliptic PDEs on compact manifolds without boundary. Our focus is on a class of monotone finite difference approximations, which provide a strong form of stability that guarantees the existence of a bounded solution. In many settings including the Dirichlet problem, it is easy to show that the resulting solution error is proportional to the formal consistency error of the scheme. We make the surprising observation that this need not be true for PDEs posed on compact manifolds without boundary. We propose a particular class of approximation schemes built around an underlying monotone scheme with consistency error $O(h^\alpha)$. By carefully constructing barrier functions, we prove that the solution error is bounded by $O(h^{\alpha/(d+1)})$ in dimension $d$. We also provide a specific example where this predicted convergence rate is observed numerically. Using these error bounds, we further design a family of provably convergent approximations to the solution gradient.

Directed acyclic graphs (DAGs) encode a lot of information about a particular distribution in their structure. However, compute required to infer these structures is typically super-exponential in the number of variables, as inference requires a sweep of a combinatorially large space of potential structures. That is, until recent advances made it possible to search this space using a differentiable metric, drastically reducing search time. While this technique -- named NOTEARS -- is widely considered a seminal work in DAG-discovery, it concedes an important property in favour of differentiability: transportability. To be transportable, the structures discovered on one dataset must apply to another dataset from the same domain. We introduce D-Struct which recovers transportability in the discovered structures through a novel architecture and loss function while remaining fully differentiable. Because D-Struct remains differentiable, our method can be easily adopted in existing differentiable architectures, as was previously done with NOTEARS. In our experiments, we empirically validate D-Struct with respect to edge accuracy and structural Hamming distance in a variety of settings.

As a computational alternative to Markov chain Monte Carlo approaches, variational inference (VI) is becoming more and more popular for approximating intractable posterior distributions in large-scale Bayesian models due to its comparable efficacy and superior efficiency. Several recent works provide theoretical justifications of VI by proving its statistical optimality for parameter estimation under various settings; meanwhile, formal analysis on the algorithmic convergence aspects of VI is still largely lacking. In this paper, we consider the common coordinate ascent variational inference (CAVI) algorithm for implementing the mean-field (MF) VI towards optimizing a Kullback--Leibler divergence objective functional over the space of all factorized distributions. Focusing on the two-block case, we analyze the convergence of CAVI by leveraging the extensive toolbox from functional analysis and optimization. We provide general conditions for certifying global or local exponential convergence of CAVI. Specifically, a new notion of generalized correlation for characterizing the interaction between the constituting blocks in influencing the VI objective functional is introduced, which according to the theory, quantifies the algorithmic contraction rate of two-block CAVI. As illustrations, we apply the developed theory to a number of examples, and derive explicit problem-dependent upper bounds on the algorithmic contraction rate.

北京阿比特科技有限公司