亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper explores the relationship between artificial intelligence and principles of distributive justice. Drawing upon the political philosophy of John Rawls, it holds that the basic structure of society should be understood as a composite of socio-technical systems, and that the operation of these systems is increasingly shaped and influenced by AI. As a consequence, egalitarian norms of justice apply to the technology when it is deployed in these contexts. These norms entail that the relevant AI systems must meet a certain standard of public justification, support citizens rights, and promote substantively fair outcomes -- something that requires specific attention be paid to the impact they have on the worst-off members of society.

相關內容

迄今為止,產品設(she)計師(shi)最友好的交互動畫軟(ruan)件。

Despite the myriad peer-reviewed papers demonstrating novel Artificial Intelligence (AI)-based solutions to COVID-19 challenges during the pandemic, few have made significant clinical impact. The impact of artificial intelligence during the COVID-19 pandemic was greatly limited by lack of model transparency. This systematic review examines the use of Explainable Artificial Intelligence (XAI) during the pandemic and how its use could overcome barriers to real-world success. We find that successful use of XAI can improve model performance, instill trust in the end-user, and provide the value needed to affect user decision-making. We introduce the reader to common XAI techniques, their utility, and specific examples of their application. Evaluation of XAI results is also discussed as an important step to maximize the value of AI-based clinical decision support systems. We illustrate the classical, modern, and potential future trends of XAI to elucidate the evolution of novel XAI techniques. Finally, we provide a checklist of suggestions during the experimental design process supported by recent publications. Common challenges during the implementation of AI solutions are also addressed with specific examples of potential solutions. We hope this review may serve as a guide to improve the clinical impact of future AI-based solutions.

For the past couple years, the Coronavirus, commonly known as COVID-19, has significantly affected the daily lives of all citizens residing in the United States by imposing several, fatal health risks that cannot go unnoticed. In response to the growing fear and danger COVID-19 inflicts upon societies in the USA, several vaccines and boosters have been created as a permanent remedy for individuals to take advantage of. In this paper, we investigate the relationship between the COVID-19 vaccines and boosters and the total case count for the Coronavirus across multiple states in the USA. Additionally, this paper discusses the relationship between several, selected underlying health conditions with COVID-19. To discuss these relationships effectively, this paper will utilize statistical tests and machine learning methods for analysis and discussion purposes. Furthermore, this paper reflects upon conclusions made about the relationship between educational attainment, race, and COVID-19 and the possible connections that can be established with underlying health conditions, vaccination rates, and COVID-19 total case and death counts.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

Meta-learning, or learning to learn, has gained renewed interest in recent years within the artificial intelligence community. However, meta-learning is incredibly prevalent within nature, has deep roots in cognitive science and psychology, and is currently studied in various forms within neuroscience. The aim of this review is to recast previous lines of research in the study of biological intelligence within the lens of meta-learning, placing these works into a common framework. More recent points of interaction between AI and neuroscience will be discussed, as well as interesting new directions that arise under this perspective.

To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.

Recently, artificial intelligence, especially machine learning has demonstrated remarkable performances in many tasks, from image processing to natural language processing, especially with the advent of deep learning. Along with research progress, machine learning has encroached into many different fields and disciplines. Some of them, such as the medical field, require high level of accountability, and thus transparency, which means we need to be able to explain machine decisions, predictions and justify their reliability. This requires greater interpretability, which often means we need to understand the mechanism underlying the algorithms. Unfortunately, the black-box nature of the deep learning is still unresolved, and many machine decisions are still poorly understood. We provide a review on interpretabilities suggested by different research works and categorize them. Also, within an exhaustive list of papers, we find that interpretability is often algorithm-centric, with few human-subject tests to verify whether proposed methods indeed enhance human interpretability. We explore further into interpretability in the medical field, illustrating the complexity of interpretability issue.

Reinforcement learning (RL) algorithms have been around for decades and been employed to solve various sequential decision-making problems. These algorithms however have faced great challenges when dealing with high-dimensional environments. The recent development of deep learning has enabled RL methods to drive optimal policies for sophisticated and capable agents, which can perform efficiently in these challenging environments. This paper addresses an important aspect of deep RL related to situations that demand multiple agents to communicate and cooperate to solve complex tasks. A survey of different approaches to problems related to multi-agent deep RL (MADRL) is presented, including non-stationarity, partial observability, continuous state and action spaces, multi-agent training schemes, multi-agent transfer learning. The merits and demerits of the reviewed methods will be analyzed and discussed, with their corresponding applications explored. It is envisaged that this review provides insights about various MADRL methods and can lead to future development of more robust and highly useful multi-agent learning methods for solving real-world problems.

Here we explore a new algorithmic framework for multi-agent reinforcement learning, called Malthusian reinforcement learning, which extends self-play to include fitness-linked population size dynamics that drive ongoing innovation. In Malthusian RL, increases in a subpopulation's average return drive subsequent increases in its size, just as Thomas Malthus argued in 1798 was the relationship between preindustrial income levels and population growth. Malthusian reinforcement learning harnesses the competitive pressures arising from growing and shrinking population size to drive agents to explore regions of state and policy spaces that they could not otherwise reach. Furthermore, in environments where there are potential gains from specialization and division of labor, we show that Malthusian reinforcement learning is better positioned to take advantage of such synergies than algorithms based on self-play.

Like any large software system, a full-fledged DBMS offers an overwhelming amount of configuration knobs. These range from static initialisation parameters like buffer sizes, degree of concurrency, or level of replication to complex runtime decisions like creating a secondary index on a particular column or reorganising the physical layout of the store. To simplify the configuration, industry grade DBMSs are usually shipped with various advisory tools, that provide recommendations for given workloads and machines. However, reality shows that the actual configuration, tuning, and maintenance is usually still done by a human administrator, relying on intuition and experience. Recent work on deep reinforcement learning has shown very promising results in solving problems, that require such a sense of intuition. For instance, it has been applied very successfully in learning how to play complicated games with enormous search spaces. Motivated by these achievements, in this work we explore how deep reinforcement learning can be used to administer a DBMS. First, we will describe how deep reinforcement learning can be used to automatically tune an arbitrary software system like a DBMS by defining a problem environment. Second, we showcase our concept of NoDBA at the concrete example of index selection and evaluate how well it recommends indexes for given workloads.

北京阿比特科技有限公司