亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Timely and effective response to humanitarian crises requires quick and accurate analysis of large amounts of text data - a process that can highly benefit from expert-assisted NLP systems trained on validated and annotated data in the humanitarian response domain. To enable creation of such NLP systems, we introduce and release HumSet, a novel and rich multilingual dataset of humanitarian response documents annotated by experts in the humanitarian response community. The dataset provides documents in three languages (English, French, Spanish) and covers a variety of humanitarian crises from 2018 to 2021 across the globe. For each document, HUMSET provides selected snippets (entries) as well as assigned classes to each entry annotated using common humanitarian information analysis frameworks. HUMSET also provides novel and challenging entry extraction and multi-label entry classification tasks. In this paper, we take a first step towards approaching these tasks and conduct a set of experiments on Pre-trained Language Models (PLM) to establish strong baselines for future research in this domain. The dataset is available at //blog.thedeep.io/humset/.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Learning · 深度學習框架 · MoDELS · 深度學習 ·
2022 年 12 月 2 日

Interoperability issue is a significant problem in Building Information Modeling (BIM). Object type, as a kind of critical semantic information needed in multiple BIM applications like scan-to-BIM and code compliance checking, also suffers when exchanging BIM data or creating models using software of other domains. It can be supplemented using deep learning. Current deep learning methods mainly learn from the shape information of BIM objects for classification, leaving relational information inherent in the BIM context unused. To address this issue, we introduce a two-branch geometric-relational deep learning framework. It boosts previous geometric classification methods with relational information. We also present a BIM object dataset IFCNet++, which contains both geometric and relational information about the objects. Experiments show that our framework can be flexibly adapted to different geometric methods. And relational features do act as a bonus to general geometric learning methods, obviously improving their classification performance, thus reducing the manual labor of checking models and improving the practical value of enriched BIM models.

Automatic labelling of anatomical structures, such as coronary arteries, is critical for diagnosis, yet existing (non-deep learning) methods are limited by a reliance on prior topological knowledge of the expected tree-like structures. As the structure such vascular systems is often difficult to conceptualize, graph-based representations have become popular due to their ability to capture the geometric and topological properties of the morphology in an orientation-independent and abstract manner. However, graph-based learning for automated labeling of tree-like anatomical structures has received limited attention in the literature. The majority of prior studies have limitations in the entity graph construction, are dependent on topological structures, and have limited accuracy due to the anatomical variability between subjects. In this paper, we propose an intuitive graph representation method, well suited to use with 3D coordinate data obtained from angiography scans. We subsequently seek to analyze subject-specific graphs using geometric deep learning. The proposed models leverage expert annotated labels from 141 patients to learn representations of each coronary segment, while capturing the effects of anatomical variability within the training data. We investigate different variants of so-called message passing neural networks. Through extensive evaluations, our pipeline achieves a promising weighted F1-score of 0.805 for labeling coronary artery (13 classes) for a five-fold cross-validation. Considering the ability of graph models in dealing with irregular data, and their scalability for data segmentation, this work highlights the potential of such methods to provide quantitative evidence to support the decisions of medical experts.

According to the World Federation of the Deaf, more than two hundred sign languages exist. Therefore, it is challenging to understand deaf individuals, even proficient sign language users, resulting in a barrier between the deaf community and the rest of society. To bridge this language barrier, we propose a novel multilingual communication system, namely MUGCAT, to improve the communication efficiency of sign language users. By converting recognized specific hand gestures into expressive pictures, which is universal usage and language independence, our MUGCAT system significantly helps deaf people convey their thoughts. To overcome the limitation of sign language usage, which is mostly impossible to translate into complete sentences for ordinary people, we propose to reconstruct meaningful sentences from the incomplete translation of sign language. We also measure the semantic similarity of generated sentences with fragmented recognized hand gestures to keep the original meaning. Experimental results show that the proposed system can work in a real-time manner and synthesize exquisite stunning illustrations and meaningful sentences from a few hand gestures of sign language. This proves that our MUGCAT has promising potential in assisting deaf communication.

A long-running goal of the clinical NLP community is the extraction of important variables trapped in clinical notes. However, roadblocks have included dataset shift from the general domain and a lack of public clinical corpora and annotations. In this work, we show that large language models, such as InstructGPT, perform well at zero- and few-shot information extraction from clinical text despite not being trained specifically for the clinical domain. Whereas text classification and generation performance have already been studied extensively in such models, here we additionally demonstrate how to leverage them to tackle a diverse set of NLP tasks which require more structured outputs, including span identification, token-level sequence classification, and relation extraction. Further, due to the dearth of available data to evaluate these systems, we introduce new datasets for benchmarking few-shot clinical information extraction based on a manual re-annotation of the CASI dataset for new tasks. On the clinical extraction tasks we studied, the GPT-3 systems significantly outperform existing zero- and few-shot baselines.

This paper presents work on detecting misogyny in the comments of a large Austrian German language newspaper forum. We describe the creation of a corpus of 6600 comments which were annotated with 5 levels of misogyny. The forum moderators were involved as experts in the creation of the annotation guidelines and the annotation of the comments. We also describe the results of training transformer-based classification models for both binarized and original label classification of that corpus.

Electronic health records (EHR) offer unprecedented opportunities for in-depth clinical phenotyping and prediction of clinical outcomes. Combining multiple data sources is crucial to generate a complete picture of disease prevalence, incidence and trajectories. The standard approach to combining clinical data involves collating clinical terms across different terminology systems using curated maps, which are often inaccurate and/or incomplete. Here, we propose sEHR-CE, a novel framework based on transformers to enable integrated phenotyping and analyses of heterogeneous clinical datasets without relying on these mappings. We unify clinical terminologies using textual descriptors of concepts, and represent individuals' EHR as sections of text. We then fine-tune pre-trained language models to predict disease phenotypes more accurately than non-text and single terminology approaches. We validate our approach using primary and secondary care data from the UK Biobank, a large-scale research study. Finally, we illustrate in a type 2 diabetes use case how sEHR-CE identifies individuals without diagnosis that share clinical characteristics with patients.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

北京阿比特科技有限公司