The integration of Multimodal Large Language Models (MLLMs) with robotic systems has significantly enhanced the ability of robots to interpret and act upon natural language instructions. Despite these advancements, conventional MLLMs are typically trained on generic image-text pairs, lacking essential robotics knowledge such as affordances and physical knowledge, which hampers their efficacy in manipulation tasks. To bridge this gap, we introduce ManipVQA, a novel framework designed to endow MLLMs with Manipulation-centric knowledge through a Visual Question-Answering format. This approach not only encompasses tool detection and affordance recognition but also extends to a comprehensive understanding of physical concepts. Our approach starts with collecting a varied set of images displaying interactive objects, which presents a broad range of challenges in tool object detection, affordance, and physical concept predictions. To seamlessly integrate this robotic-specific knowledge with the inherent vision-reasoning capabilities of MLLMs, we adopt a unified VQA format and devise a fine-tuning strategy that preserves the original vision-reasoning abilities while incorporating the new robotic insights. Empirical evaluations conducted in robotic simulators and across various vision task benchmarks demonstrate the robust performance of ManipVQA. Code and dataset will be made publicly available at //github.com/SiyuanHuang95/ManipVQA.
This research introduces Procedural Artificial Narrative using Generative AI (PANGeA), a structured approach for leveraging large language models (LLMs), guided by a game designer's high-level criteria, to generate narrative content for turn-based role-playing video games (RPGs). Distinct from prior applications of LLMs used for video game design, PANGeA innovates by not only generating game level data (which includes, but is not limited to, setting, key items, and non-playable characters (NPCs)), but by also fostering dynamic, free-form interactions between the player and the environment that align with the procedural game narrative. The NPCs generated by PANGeA are personality-biased and express traits from the Big 5 Personality Model in their generated responses. PANGeA addresses challenges behind ingesting free-form text input, which can prompt LLM responses beyond the scope of the game narrative. A novel validation system that uses the LLM's intelligence evaluates text input and aligns generated responses with the unfolding narrative. Making these interactions possible, PANGeA is supported by a server that hosts a custom memory system that supplies context for augmenting generated responses thus aligning them with the procedural narrative. For its broad application, the server has a REST interface enabling any game engine to integrate directly with PANGeA, as well as an LLM interface adaptable with local or private LLMs. PANGeA's ability to foster dynamic narrative generation by aligning responses with the procedural narrative is demonstrated through an empirical study and ablation test of two versions of a demo game. These are, a custom, browser-based GPT and a Unity demo. As the results show, PANGeA holds potential to assist game designers in using LLMs to generate narrative-consistent content even when provided varied and unpredictable, free-form text input.
We propose GS-LRM, a scalable large reconstruction model that can predict high-quality 3D Gaussian primitives from 2-4 posed sparse images in 0.23 seconds on single A100 GPU. Our model features a very simple transformer-based architecture; we patchify input posed images, pass the concatenated multi-view image tokens through a sequence of transformer blocks, and decode final per-pixel Gaussian parameters directly from these tokens for differentiable rendering. In contrast to previous LRMs that can only reconstruct objects, by predicting per-pixel Gaussians, GS-LRM naturally handles scenes with large variations in scale and complexity. We show that our model can work on both object and scene captures by training it on Objaverse and RealEstate10K respectively. In both scenarios, the models outperform state-of-the-art baselines by a wide margin. We also demonstrate applications of our model in downstream 3D generation tasks. Our project webpage is available at: //sai-bi.github.io/project/gs-lrm/ .
With the expansion of the scale of robotics applications, the multi-goal multi-agent pathfinding (MG-MAPF) problem began to gain widespread attention. This problem requires each agent to visit pre-assigned multiple goal points at least once without conflict. Some previous methods have been proposed to solve the MG-MAPF problem based on Decoupling the goal Vertex visiting order search and the Single-agent pathfinding (DVS). However, this paper demonstrates that the methods based on DVS cannot always obtain the optimal solution. To obtain the optimal result, we propose the Multi-Goal Conflict-Based Search (MGCBS), which is based on Decoupling the goal Safe interval visiting order search and the Single-agent pathfinding (DSS). Additionally, we present the Time-Interval-Space Forest (TIS Forest) to enhance the efficiency of MGCBS by maintaining the shortest paths from any start point at any start time step to each safe interval at the goal points. The experiment demonstrates that our method can consistently obtain optimal results and execute up to 7 times faster than the state-of-the-art method in our evaluation.
Existing neural audio codecs usually sacrifice computational complexity for audio quality. They build the feature transformation layers mainly on convolutional blocks, which are not inherently appropriate for capturing local redundancies of audio signals. As compensation, either adversarial losses from a discriminator or a large number of model parameters are required to improve the codec. To that end, we propose Efficient Speech Codec (ESC), a lightweight parameter-efficient codec laid on cross-scale residual vector quantization and transformers. Our model leverages mirrored hierarchical window-attention transformer blocks and performs step-wise decoding from coarse-to-fine feature representations. To enhance codebook utilization, we design a learning paradigm that involves a pre-training stage to assist with codec training. Extensive results show that ESC can achieve high audio quality with much lower complexity, which is a prospective alternative in place of existing codecs.
Recent research on instructable agents has used memory-augmented Large Language Models (LLMs) as task planners, a technique that retrieves language-program examples relevant to the input instruction and uses them as in-context examples in the LLM prompt to improve the performance of the LLM in inferring the correct action and task plans. In this technical report, we extend the capabilities of HELPER, by expanding its memory with a wider array of examples and prompts, and by integrating additional APIs for asking questions. This simple expansion of HELPER into a shared memory enables the agent to work across the domains of executing plans from dialogue, natural language instruction following, active question asking, and commonsense room reorganization. We evaluate the agent on four diverse interactive visual-language embodied agent benchmarks: ALFRED, TEACh, DialFRED, and the Tidy Task. HELPER-X achieves few-shot, state-of-the-art performance across these benchmarks using a single agent, without requiring in-domain training, and remains competitive with agents that have undergone in-domain training.
The generative AI technology offers an increasing variety of tools for generating entirely synthetic images that are increasingly indistinguishable from real ones. Unlike methods that alter portions of an image, the creation of completely synthetic images presents a unique challenge and several Synthetic Image Detection (SID) methods have recently appeared to tackle it. Yet, there is often a large gap between experimental results on benchmark datasets and the performance of methods in the wild. To better address the evaluation needs of SID and help close this gap, this paper introduces a benchmarking framework that integrates several state-of-the-art SID models. Our selection of integrated models was based on the utilization of varied input features, and different network architectures, aiming to encompass a broad spectrum of techniques. The framework leverages recent datasets with a diverse set of generative models, high level of photo-realism and resolution, reflecting the rapid improvements in image synthesis technology. Additionally, the framework enables the study of how image transformations, common in assets shared online, such as JPEG compression, affect detection performance. SIDBench is available on //github.com/mever-team/sidbench and is designed in a modular manner to enable easy inclusion of new datasets and SID models.
Low-dose computed tomography (LDCT) has become the technology of choice for diagnostic medical imaging, given its lower radiation dose compared to standard CT, despite increasing image noise and potentially affecting diagnostic accuracy. To address this, advanced deep learning-based LDCT denoising algorithms have been developed, primarily using Convolutional Neural Networks (CNNs) or Transformer Networks with the Unet architecture. This architecture enhances image detail by integrating feature maps from the encoder and decoder via skip connections. However, current methods often overlook enhancements to the Unet architecture itself, focusing instead on optimizing encoder and decoder structures. This approach can be problematic due to the significant differences in feature map characteristics between the encoder and decoder, where simple fusion strategies may not effectively reconstruct images.In this paper, we introduce WiTUnet, a novel LDCT image denoising method that utilizes nested, dense skip pathways instead of traditional skip connections to improve feature integration. WiTUnet also incorporates a windowed Transformer structure to process images in smaller, non-overlapping segments, reducing computational load. Additionally, the integration of a Local Image Perception Enhancement (LiPe) module in both the encoder and decoder replaces the standard multi-layer perceptron (MLP) in Transformers, enhancing local feature capture and representation. Through extensive experimental comparisons, WiTUnet has demonstrated superior performance over existing methods in key metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), and Root Mean Square Error (RMSE), significantly improving noise removal and image quality.
The integration of brain-computer interfaces (BCIs) into the realm of smart wheelchair (SW) technology signifies a notable leap forward in enhancing the mobility and autonomy of individuals with physical disabilities. BCIs are a technology that enables direct communication between the brain and external devices. While BCIs systems offer remarkable opportunities for enhancing human-computer interaction and providing mobility solutions for individuals with disabilities, they also raise significant concerns regarding security, safety, and privacy that have not been thoroughly addressed by researchers on a large scale. Our research aims to enhance wheelchair control for individuals with physical disabilities by leveraging electroencephalography (EEG) signals for BCIs. We introduce a non-invasive BCI system that utilizes a neuro-signal acquisition headset to capture EEG signals. These signals are obtained from specific brain activities that individuals have been trained to produce, allowing for precise control of the wheelchair. EEG-based BCIs are instrumental in capturing the brain's electrical activity and translating these signals into actionable commands. The primary objective of our study is to demonstrate the system's capability to interpret EEG signals and decode specific thought patterns or mental commands issued by the user. By doing so, it aims to convert these into accurate control commands for the wheelchair. This process includes the recognition of navigational intentions, such as moving forward, backward, or executing turns, specifically tailored for wheelchair operation. Through this innovative approach, we aim to create a seamless interface between the user's cognitive intentions and the wheelchair's movements, enhancing autonomy and mobility for individuals with physical disabilities.
This paper presents a solution to address carbon emission mitigation for end-to-end edge computing systems, including the computing at battery-powered edge devices and servers, as well as the communications between them. We design and implement, CarbonCP, a context-adaptive, carbon-aware, and uncertainty-aware AI inference framework built upon conformal prediction theory, which balances operational carbon emissions, end-to-end latency, and battery consumption of edge devices through DNN partitioning under varying system processing contexts and carbon intensity. Our experimental results demonstrate that CarbonCP is effective in substantially reducing operational carbon emissions, up to 58.8%, while maintaining key user-centric performance metrics with only 9.9% error rate.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.