Neural language models often fail to generate diverse and informative texts, limiting their applicability in real-world problems. While previous approaches have proposed to address these issues by identifying and penalizing undesirable behaviors (e.g., repetition, overuse of frequent words) from language models, we propose an alternative approach based on an observation: models primarily learn attributes within examples that are likely to cause degeneration problems. Based on this observation, we propose a new approach to prevent degeneration problems by training two models. Specifically, we first train a model that is designed to amplify undesirable patterns. We then enhance the diversity of the second model by focusing on patterns that the first model fails to learn. Extensive experiments on two tasks, namely language modeling and dialogue generation, demonstrate the effectiveness of our approach.
We consider two popular approaches to Knowledge Graph Completion (KGC): textual models that rely on textual entity descriptions, and structure-based models that exploit the connectivity structure of the Knowledge Graph (KG). Preliminary experiments show that these approaches have complementary strengths: structure-based models perform well when the gold answer is easily reachable from the query head in the KG, while textual models exploit descriptions to give good performance even when the gold answer is not reachable. In response, we explore ensembling as a way of combining the best of both approaches. We propose a novel method for learning query-dependent ensemble weights by using the distributions of scores assigned by individual models to all candidate entities. Our ensemble baseline achieves state-of-the-art results on three standard KGC datasets, with up to 6.8 pt MRR and 8.3 pt Hits@1 gains over best individual models.
Large language models (LLMs) frequently hallucinate on abstractive summarization tasks such as document-based question-answering, meeting summarization, and clinical report generation, even though all necessary information is included in context. However, optimizing LLMs to hallucinate less on these tasks is challenging, as hallucination is hard to efficiently evaluate at each optimization step. In this work, we show that reducing hallucination on a synthetic task can also reduce hallucination on real-world downstream tasks. Our method, SynTra, first designs a synthetic task where hallucinations are easy to elicit and measure. It next optimizes the LLM's system message via prefix-tuning on the synthetic task, and finally transfers the system message to realistic, hard-to-optimize tasks. Across three realistic abstractive summarization tasks, SynTra reduces hallucination for two 13B-parameter LLMs using only a synthetic retrieval task for supervision. We also find that optimizing the system message rather than the model weights can be critical; fine-tuning the entire model on the synthetic task can counterintuitively increase hallucination. Overall, SynTra demonstrates that the extra flexibility of working with synthetic data can help mitigate undesired behaviors in practice.
Despite efforts to align large language models to produce harmless responses, they are still vulnerable to jailbreak prompts that elicit unrestricted behaviour. In this work, we investigate persona modulation as a black-box jailbreaking method to steer a target model to take on personalities that are willing to comply with harmful instructions. Rather than manually crafting prompts for each persona, we automate the generation of jailbreaks using a language model assistant. We demonstrate a range of harmful completions made possible by persona modulation, including detailed instructions for synthesising methamphetamine, building a bomb, and laundering money. These automated attacks achieve a harmful completion rate of 42.5% in GPT-4, which is 185 times larger than before modulation (0.23%). These prompts also transfer to Claude 2 and Vicuna with harmful completion rates of 61.0% and 35.9%, respectively. Our work reveals yet another vulnerability in commercial large language models and highlights the need for more comprehensive safeguards.
Generative approaches powered by large language models (LLMs) have demonstrated emergent abilities in tasks that require complex reasoning abilities. Yet the generative nature still makes the generated content suffer from hallucinations, thus unsuitable for entity-centric tasks like entity linking (EL) requiring precise entity predictions over a large knowledge base. We present Instructed Generative Entity Linker (INSGENEL), the first approach that enables casual language models to perform entity linking over knowledge bases. Several methods to equip language models with EL capability were proposed in this work, including (i) a sequence-to-sequence training EL objective with instruction-tuning, (ii) a novel generative EL framework based on a light-weight potential mention retriever that frees the model from heavy and non-parallelizable decoding, achieving 4$\times$ speedup without compromise on linking metrics. INSGENEL outperforms previous generative alternatives with +6.8 F1 points gain on average, also with a huge advantage in training data efficiency and training compute consumption. In addition, our skillfully engineered in-context learning (ICL) framework for EL still lags behind INSGENEL significantly, reaffirming that the EL task remains a persistent hurdle for general LLMs.
We suggest a novel procedure for online change point detection. Our approach expands an idea of maximizing a discrepancy measure between points from pre-change and post-change distributions. This leads to a flexible procedure suitable for both parametric and nonparametric scenarios. We prove non-asymptotic bounds on the average running length of the procedure and its expected detection delay. The efficiency of the algorithm is illustrated with numerical experiments on synthetic and real-world data sets.
Large language models (LLMs) are powerful AI tools that can generate and comprehend natural language text and other complex information. However, the field lacks a mathematical framework to systematically describe, compare and improve LLMs. We propose Hex a framework that clarifies key terms and concepts in LLM research, such as hallucinations, alignment, self-verification and chain-of-thought reasoning. The Hex framework offers a precise and consistent way to characterize LLMs, identify their strengths and weaknesses, and integrate new findings. Using Hex, we differentiate chain-of-thought reasoning from chain-of-thought prompting and establish the conditions under which they are equivalent. This distinction clarifies the basic assumptions behind chain-of-thought prompting and its implications for methods that use it, such as self-verification and prompt programming. Our goal is to provide a formal framework for LLMs that can help both researchers and practitioners explore new possibilities for generative AI. We do not claim to have a definitive solution, but rather a tool for opening up new research avenues. We argue that our formal definitions and results are crucial for advancing the discussion on how to build generative AI systems that are safe, reliable, fair and robust, especially in domains like healthcare and software engineering.
Large language models (LLMs) can learn to perform a wide range of natural language tasks from just a handful of in-context examples. However, for generating strings from highly structured languages (e.g., semantic parsing to complex domain-specific languages), it is challenging for the LLM to generalize from just a few exemplars. We propose \emph{grammar prompting}, a simple approach to enable LLMs to use external knowledge and domain-specific constraints, expressed through a grammar in Backus--Naur Form (BNF), during in-context learning. Grammar prompting augments each demonstration example with a specialized grammar that is minimally sufficient for generating the particular output example, where the specialized grammar is a subset of the full DSL grammar. For inference, the LLM first predicts a BNF grammar given a test input, and then generates the output according to the rules of the grammar. Experiments demonstrate that grammar prompting can enable LLMs to perform competitively on a diverse set of DSL generation tasks, including semantic parsing (SMCalFlow, Overnight, GeoQuery), PDDL planning, and SMILES-based molecule generation.
With the rapid development of artificial intelligence, large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning. This has sparked significant interest in applying LLMs to enhance various aspects of healthcare, ranging from medical education to clinical decision support. However, medicine involves multifaceted data modalities and nuanced reasoning skills, presenting challenges for integrating LLMs. This paper provides a comprehensive review on the applications and implications of LLMs in medicine. It begins by examining the fundamental applications of general-purpose and specialized LLMs, demonstrating their utilities in knowledge retrieval, research support, clinical workflow automation, and diagnostic assistance. Recognizing the inherent multimodality of medicine, the review then focuses on multimodal LLMs, investigating their ability to process diverse data types like medical imaging and EHRs to augment diagnostic accuracy. To address LLMs' limitations regarding personalization and complex clinical reasoning, the paper explores the emerging development of LLM-powered autonomous agents for healthcare. Furthermore, it summarizes the evaluation methodologies for assessing LLMs' reliability and safety in medical contexts. Overall, this review offers an extensive analysis on the transformative potential of LLMs in modern medicine. It also highlights the pivotal need for continuous optimizations and ethical oversight before these models can be effectively integrated into clinical practice. Visit //github.com/mingze-yuan/Awesome-LLM-Healthcare for an accompanying GitHub repository containing latest papers.
Pretrained language models (PLMs) based knowledge-grounded dialogue systems are prone to generate responses that are factually inconsistent with the provided knowledge source. In such inconsistent responses, the dialogue models fail to accurately express the external knowledge they rely upon. Inspired by previous work which identified that feed-forward networks (FFNs) within Transformers are responsible for factual knowledge expressions, we investigate two methods to efficiently improve the factual expression capability {of FFNs} by knowledge enhancement and alignment respectively. We first propose \textsc{K-Dial}, which {explicitly} introduces {extended FFNs in Transformers to enhance factual knowledge expressions} given the specific patterns of knowledge-grounded dialogue inputs. Additionally, we apply the reinforcement learning for factual consistency (RLFC) method to implicitly adjust FFNs' expressions in responses by aligning with gold knowledge for the factual consistency preference. To comprehensively assess the factual consistency and dialogue quality of responses, we employ extensive automatic measures and human evaluations including sophisticated fine-grained NLI-based metrics. Experimental results on WoW and CMU\_DoG datasets demonstrate that our methods efficiently enhance the ability of the FFN module to convey factual knowledge, validating the efficacy of improving factual consistency for knowledge-grounded dialogue systems.
Large language models (LLMs) have shown great potential as general-purpose AI assistants in various domains. To meet the requirements of different applications, LLMs are often customized by further fine-tuning. However, the powerful learning ability of LLMs not only enables them to acquire new tasks but also makes them susceptible to learning undesired behaviors. For example, even safety-aligned LLMs can be easily fine-tuned into harmful assistants as the fine-tuning data often contains implicit or explicit harmful content. Can we train LLMs on harmful data without learning harmful behaviors? This paper proposes a controllable training framework that makes harmful behaviors unlearnable during the fine-tuning process. Specifically, we introduce ``security vectors'', a few new parameters that can be separated from the LLM, to ensure LLM's responses are consistent with the harmful behavior. Security vectors are activated during fine-tuning, the consistent behavior makes LLM believe that such behavior has already been learned, there is no need to further optimize for harmful data. During inference, we can deactivate security vectors to restore the LLM's normal behavior. The experimental results show that the security vectors generated by 100 harmful samples are enough to prevent LLM from learning 1000 harmful samples, while preserving the ability to learn other useful information.