亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tensor ring (TR) decomposition is a simple but effective tensor network for analyzing and interpreting latent patterns of tensors. In this work, we propose a doubly randomized optimization framework for computing TR decomposition. It can be regarded as a sensible mix of randomized block coordinate descent and stochastic gradient descent, and hence functions in a double-random manner and can achieve lightweight updates and a small memory footprint. Further, to improve the convergence, especially for ill-conditioned problems, we propose a scaled version of the framework that can be viewed as an adaptive preconditioned or diagonally-scaled variant. Four different probability distributions for selecting the mini-batch and the adaptive strategy for determining the step size are also provided. Finally, we present the theoretical properties and numerical performance for our proposals.

相關內容

Neural signed distance functions (SDFs) have shown remarkable capability in representing geometry with details. However, without signed distance supervision, it is still a challenge to infer SDFs from point clouds or multi-view images using neural networks. In this paper, we claim that gradient consistency in the field, indicated by the parallelism of level sets, is the key factor affecting the inference accuracy. Hence, we propose a level set alignment loss to evaluate the parallelism of level sets, which can be minimized to achieve better gradient consistency. Our novelty lies in that we can align all level sets to the zero level set by constraining gradients at queries and their projections on the zero level set in an adaptive way. Our insight is to propagate the zero level set to everywhere in the field through consistent gradients to eliminate uncertainty in the field that is caused by the discreteness of 3D point clouds or the lack of observations from multi-view images. Our proposed loss is a general term which can be used upon different methods to infer SDFs from 3D point clouds and multi-view images. Our numerical and visual comparisons demonstrate that our loss can significantly improve the accuracy of SDFs inferred from point clouds or multi-view images under various benchmarks. Code and data are available at //github.com/mabaorui/TowardsBetterGradient .

Matrix decomposition is a very important mathematical tool in numerical linear algebra for data processing. In this paper, we introduce a new randomized matrix decomposition algorithm, which is called randomized approximate SVD based on Qatar Riyal decomposition (RCSVD-QR). Our method utilize random sampling and the OR decomposition to address a serious bottlenck associated with classical SVD. RCSVD-QR gives satisfactory convergence speed as well as accuracy as compared to those state-of-the-art algorithms. In addition, we provides an estimate for the expected approximation error in Frobenius norm. Numerical experiments verify these claims.

We propose a two-step Newton's method for refining an approximation of a singular zero whose deflation process terminates after one step, also known as a deflation-one singularity. Given an isolated singular zero of a square analytic system, our algorithm exploits an invertible linear operator obtained by combining the Jacobian and a projection of the Hessian in the direction of the kernel of the Jacobian. We prove the quadratic convergence of the two-step Newton method when it is applied to an approximation of a deflation-one singular zero. Also, the algorithm requires a smaller size of matrices than the existing methods, making it more efficient. We demonstrate examples and experiments to show the efficiency of the method.

Determining the satisfiability of Boolean constraint-satisfaction problems with different types of constraints, that is hybrid constraints, is a well-studied problem with important applications. We study here a new application of hybrid Boolean constraints, which arises in quantum computing. The problem relates to constrained perfect matching in edge-colored graphs. While general-purpose hybrid constraint solvers can be powerful, we show that direct encodings of the constrained-matching problem as hybrid constraints scale poorly and special techniques are still needed. We propose a novel encoding based on Tutte's Theorem in graph theory as well as optimization techniques. Empirical results demonstrate that our encoding, in suitable languages with advanced SAT solvers, scales significantly better than a number of competing approaches on constrained-matching benchmarks. Our study identifies the necessity of designing problem-specific encodings when applying powerful general-purpose constraint solvers.

We study the problem of change point (CP) detection with high dimensional time series, within the framework of frequency domain. The overarching goal is to locate all change points and for each change point, delineate which series are activated by the change, over which set of frequencies. The working assumption is that only a few series are activated per change and frequency. We solve the problem by computing a CUSUM tensor based on spectra estimated from blocks of the observed time series. A frequency-specific projection approach is applied to the CUSUM tensor for dimension reduction. The projection direction is estimated by a proposed sparse tensor decomposition algorithm. Finally, the projected CUSUM vectors across frequencies are aggregated by a sparsified wild binary segmentation for change point detection. We provide theoretical guarantees on the number of estimated change points and the convergence rate of their locations. We derive error bounds for the estimated projection direction for identifying the frequency-specific series that are activated in a change. We provide data-driven rules for the choice of parameters. We illustrate the efficacy of the proposed method by simulation and a stock returns application.

In neural networks, task-relevant information is represented jointly by groups of neurons. However, the specific way in which this mutual information about the classification label is distributed among the individual neurons is not well understood: While parts of it may only be obtainable from specific single neurons, other parts are carried redundantly or synergistically by multiple neurons. We show how Partial Information Decomposition (PID), a recent extension of information theory, can disentangle these different contributions. From this, we introduce the measure of "Representational Complexity", which quantifies the difficulty of accessing information spread across multiple neurons. We show how this complexity is directly computable for smaller layers. For larger layers, we propose subsampling and coarse-graining procedures and prove corresponding bounds on the latter. Empirically, for quantized deep neural networks solving the MNIST and CIFAR10 tasks, we observe that representational complexity decreases both through successive hidden layers and over training, and compare the results to related measures. Overall, we propose representational complexity as a principled and interpretable summary statistic for analyzing the structure and evolution of neural representations and complex systems in general.

With recent advancements in computer hardware and software platforms, there has been a surge of interest in solving partial differential equations with deep learning-based methods, and the integration with domain decomposition strategies has attracted considerable attention owing to its enhanced representation and parallelization capacities of the network solution. While there are already several works that substitute the subproblem solver with neural networks for overlapping Schwarz methods, the non-overlapping counterpart has not been extensively explored because of the inaccurate flux estimation at interface that would propagate errors to neighbouring subdomains and eventually hinder the convergence of outer iterations. In this study, a novel learning approach for solving elliptic boundary value problems, i.e., the compensated deep Ritz method using neural network extension operators, is proposed to enable reliable flux transmission across subdomain interfaces, thereby allowing us to construct effective learning algorithms for realizing non-overlapping domain decomposition methods (DDMs) in the presence of erroneous interface conditions. Numerical experiments on a variety of elliptic problems, including regular and irregular interfaces, low and high dimensions, two and four subdomains, and smooth and high-contrast coefficients are carried out to validate the effectiveness of our proposed algorithms.

Transportation of probability measures underlies many core tasks in statistics and machine learning, from variational inference to generative modeling. A typical goal is to represent a target probability measure of interest as the push-forward of a tractable source measure through a learned map. We present a new construction of such a transport map, given the ability to evaluate the score of the target distribution. Specifically, we characterize the map as a zero of an infinite-dimensional score-residual operator and derive a Newton-type method for iteratively constructing such a zero. We prove convergence of these iterations by invoking classical elliptic regularity theory for partial differential equations (PDE) and show that this construction enjoys rapid convergence, under smoothness assumptions on the target score. A key element of our approach is a generalization of the elementary Newton method to infinite-dimensional operators, other forms of which have appeared in nonlinear PDE and in dynamical systems. Our Newton construction, while developed in a functional setting, also suggests new iterative algorithms for approximating transport maps.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

北京阿比特科技有限公司