亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We revisit the Pseudo-Bayesian approach to the problem of estimating density matrix in quantum state tomography in this paper. Pseudo-Bayesian inference has been shown to offer a powerful paradign for quantum tomography with attractive theoretical and empirical results. However, the computation of (Pseudo-)Bayesian estimators, due to sampling from complex and high-dimensional distribution, pose significant challenges that hampers their usages in practical settings. To overcome this problem, we present an efficient adaptive MCMC sampling method for the Pseudo-Bayesian estimator. We show in simulations that our approach is substantially faster than the previous implementation by at least two orders of magnitude which is significant for practical quantum tomography.

相關內容

Selecting the step size for the Metropolis-adjusted Langevin algorithm (MALA) is necessary in order to obtain satisfactory performance. However, finding an adequate step size for an arbitrary target distribution can be a difficult task and even the best step size can perform poorly in specific regions of the space when the target distribution is sufficiently complex. To resolve this issue we introduce autoMALA, a new Markov chain Monte Carlo algorithm based on MALA that automatically sets its step size at each iteration based on the local geometry of the target distribution. We prove that autoMALA has the correct invariant distribution, despite continual automatic adjustments of the step size. Our experiments demonstrate that autoMALA is competitive with related state-of-the-art MCMC methods, in terms of the number of log density evaluations per effective sample, and it outperforms state-of-the-art samplers on targets with varying geometries. Furthermore, we find that autoMALA tends to find step sizes comparable to optimally-tuned MALA when a fixed step size suffices for the whole domain.

Contraction in Wasserstein 1-distance with explicit rates is established for generalized Hamiltonian Monte Carlo with stochastic gradients under possibly nonconvex conditions. The algorithms considered include splitting schemes of kinetic Langevin diffusion. As consequence, quantitative Gaussian concentration bounds are provided for empirical averages. Convergence in Wasserstein 2-distance, total variation and relative entropy are also given, together with numerical bias estimates.

The Bayesian statistical framework provides a systematic approach to enhance the regularization model by incorporating prior information about the desired solution. For the Bayesian linear inverse problems with Gaussian noise and Gaussian prior, we propose a new iterative regularization algorithm that belongs to subspace projection regularization (SPR) methods. By treating the forward model matrix as a linear operator between the two underlying finite dimensional Hilbert spaces with new introduced inner products, we first introduce an iterative process that can generate a series of valid solution subspaces. The SPR method then projects the original problem onto these solution subspaces to get a series of low dimensional linear least squares problems, where an efficient procedure is developed to update the solutions of them to approximate the desired solution of the original problem. With the new designed early stopping rules, this iterative algorithm can obtain a regularized solution with a satisfied accuracy. Several theoretical results about the algorithm are established to reveal the regularization properties of it. We use both small-scale and large-scale inverse problems to test the proposed algorithm and demonstrate its robustness and efficiency. The most computationally intensive operations in the proposed algorithm only involve matrix-vector products, making it highly efficient for large-scale problems.

This research study investigates the minimization of inequality in the ranks of vertices obtained using the PageRank algorithm. PageRank is a widely used algorithm for ranking webpages and plays a significant role in determining web traffic. This study employs the Gini coefficient, a measure of income/wealth inequality, to assess the inequality in PageRank distributions on various types of graphs. The investigation involves two experiments: one that modifies strategies for handling dead-end nodes and another that explores six deterministic methods for reducing inequality. Our findings indicate that a combination of two distinct heuristics may present an effective strategy for minimizing inequality.

In this paper we consider the finite element approximation of Maxwell's problem and analyse the prescription of essential boundary conditions in a weak sense using Nitsche's method. To avoid indefiniteness of the problem, the original equations are augmented with the gradient of a scalar field that allows one to impose the zero divergence of the magnetic induction, even if the exact solution for this scalar field is zero. Two finite element approximations are considered, namely, one in which the approximation spaces are assumed to satisfy the appropriate inf-sup condition that render the standard Galerkin method stable, and another augmented and stabilised one that permits the use of finite element interpolations of arbitrary order. Stability and convergence results are provided for the two finite element formulations considered.

The fundamental computational issues in Bayesian inverse problems (BIPs) governed by partial differential equations (PDEs) stem from the requirement of repeated forward model evaluations. A popular strategy to reduce such cost is to replace expensive model simulations by computationally efficient approximations using operator learning, motivated by recent progresses in deep learning. However, using the approximated model directly may introduce a modeling error, exacerbating the already ill-posedness of inverse problems. Thus, balancing between accuracy and efficiency is essential for the effective implementation of such approaches. To this end, we develop an adaptive operator learning framework that can reduce modeling error gradually by forcing the surrogate to be accurate in local areas. This is accomplished by fine-tuning the pre-trained approximate model during the inversion process with adaptive points selected by a greedy algorithm, which requires only a few forward model evaluations. To validate our approach, we adopt DeepOnet to construct the surrogate and use unscented Kalman inversion (UKI) to approximate the solution of BIPs, respectively. Furthermore, we present rigorous convergence guarantee in the linear case using the framework of UKI. We test the approach on several benchmarks, including the Darcy flow, the heat source inversion problem, and the reaction diffusion problems. Numerical results demonstrate that our method can significantly reduce computational costs while maintaining inversion accuracy.

For problems of time-harmonic scattering by rational polygonal obstacles, embedding formulae express the far-field pattern induced by any incident plane wave in terms of the far-field patterns for a relatively small (frequency-independent) set of canonical incident angles. Although these remarkable formulae are exact in theory, here we demonstrate that: (i) they are highly sensitive to numerical errors in practice, and; (ii) direct calculation of the coefficients in these formulae may be impossible for particular sets of canonical incident angles, even in exact arithmetic. Only by overcoming these practical issues can embedding formulae provide a highly efficient approach to computing the far-field pattern induced by a large number of incident angles. Here we propose solutions for problems (i) and (ii), backed up by theory and numerical experiments. Problem (i) is solved using techniques from computational complex analysis: we reformulate the embedding formula as a complex contour integral and prove that this is much less sensitive to numerical errors. In practice, this contour integral can be efficiently evaluated by residue calculus. Problem (ii) is addressed using techniques from numerical linear algebra: we oversample, considering more canonical incident angles than are necessary, thus expanding the space of valid coefficients vectors. The coefficients vectors can then be selected using either a least squares approach or column subset selection.

The goal of this note is to explain the reconciliation problem for continuous-variable quantum key distribution protocols with a discrete modulation. Such modulation formats are attractive since they significantly simplify experimental implementations compared to protocols with a Gaussian modulation. Previous security proofs that relied crucially on the Gaussian distribution of the input states are rendered inapplicable, and new proofs based on the entropy accumulation theorem have emerged. Unfortunately, these proofs are not compatible with existing reconciliation procedures, and necessitate a reevaluation of the reconciliation problem. We argue that this problem is nontrivial and deserves further attention. In particular, assuming it can be solved with optimal efficiency leads to overly optimistic predictions for the performance of the key distribution protocol, in particular for long distances.

This paper reexamines the research on out-of-distribution (OOD) robustness in the field of NLP. We find that the distribution shift settings in previous studies commonly lack adequate challenges, hindering the accurate evaluation of OOD robustness. To address these issues, we propose a benchmark construction protocol that ensures clear differentiation and challenging distribution shifts. Then we introduce BOSS, a Benchmark suite for Out-of-distribution robustneSS evaluation covering 5 tasks and 20 datasets. Based on BOSS, we conduct a series of experiments on pre-trained language models for analysis and evaluation of OOD robustness. First, for vanilla fine-tuning, we examine the relationship between in-distribution (ID) and OOD performance. We identify three typical types that unveil the inner learning mechanism, which could potentially facilitate the forecasting of OOD robustness, correlating with the advancements on ID datasets. Then, we evaluate 5 classic methods on BOSS and find that, despite exhibiting some effectiveness in specific cases, they do not offer significant improvement compared to vanilla fine-tuning. Further, we evaluate 5 LLMs with various adaptation paradigms and find that when sufficient ID data is available, fine-tuning domain-specific models outperform LLMs on ID examples significantly. However, in the case of OOD instances, prioritizing LLMs with in-context learning yields better results. We identify that both fine-tuned small models and LLMs face challenges in effectively addressing downstream tasks. The code is public at \url{//github.com/lifan-yuan/OOD_NLP}.

This paper presents two methods for approximating a proper subset of the entries of a Hessian using only function evaluations. These approximations are obtained using the techniques called \emph{generalized simplex Hessian} and \emph{generalized centered simplex Hessian}. We show how to choose the matrices of directions involved in the computation of these two techniques depending on the entries of the Hessian of interest. We discuss the number of function evaluations required in each case and develop a general formula to approximate all order-$P$ partial derivatives. Since only function evaluations are required to compute the methods discussed in this paper, they are suitable for use in derivative-free optimization methods.

北京阿比特科技有限公司