亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing evaluation benchmarks of language models of code (code LMs) focus almost exclusively on whether the LMs can generate functionally-correct code. In real-world software engineering, developers think beyond functional correctness. They have requirements on "how" a functionality should be implemented to meet overall system design objectives like efficiency, security, and maintainability. They would also trust the code LMs more if the LMs demonstrate robust understanding of requirements and code semantics. We propose a new benchmark NoFunEval to evaluate code LMs on non-functional requirements and simple classification instances for both functional and non-functional requirements. We propose a prompting method, Coding Concepts (CoCo), as a way for a developer to communicate the domain knowledge to the LMs. We conduct an extensive evaluation of twenty-two code LMs. Our finding is that they generally falter when tested on our benchmark, hinting at fundamental blindspots in their training setups. Surprisingly, even the classification accuracy on functional-correctness instances derived from the popular HumanEval benchmark is low, calling in question the depth of their comprehension and the source of their success in generating functionally-correct code in the first place. We will release our benchmark and evaluation scripts publicly at //aka.ms/NoFunEval.

相關內容

The ability of Large Language Models (LLMs) to critique and refine their reasoning is crucial for their application in evaluation, feedback provision, and self-improvement. This paper introduces CriticBench, a comprehensive benchmark designed to assess LLMs' abilities to critique and rectify their reasoning across a variety of tasks. CriticBench encompasses five reasoning domains: mathematical, commonsense, symbolic, coding, and algorithmic. It compiles 15 datasets and incorporates responses from three LLM families. Utilizing CriticBench, we evaluate and dissect the performance of 17 LLMs in generation, critique, and correction reasoning, i.e., GQC reasoning. Our findings reveal: (1) a linear relationship in GQC capabilities, with critique-focused training markedly enhancing performance; (2) a task-dependent variation in correction effectiveness, with logic-oriented tasks being more amenable to correction; (3) GQC knowledge inconsistencies that decrease as model size increases; and (4) an intriguing inter-model critiquing dynamic, where stronger models are better at critiquing weaker ones, while weaker models can surprisingly surpass stronger ones in their self-critique. We hope these insights into the nuanced critique-correct reasoning of LLMs will foster further research in LLM critique and self-improvement.

The rapid advancements in large language models (LLMs) have ignited interest in the temporal knowledge graph (tKG) domain, where conventional embedding-based and rule-based methods dominate. The question remains open of whether pre-trained LLMs can understand structured temporal relational data and replace them as the foundation model for temporal relational forecasting. Therefore, we bring temporal knowledge forecasting into the generative setting. However, challenges occur in the huge chasms between complex temporal graph data structure and sequential natural expressions LLMs can handle, and between the enormous data sizes of tKGs and heavy computation costs of finetuning LLMs. To address these challenges, we propose a novel retrieval-augmented generation framework named GenTKG combining a temporal logical rule-based retrieval strategy and few-shot parameter-efficient instruction tuning to solve the above challenges, respectively. Extensive experiments have shown that GenTKG outperforms conventional methods of temporal relational forecasting with low computation resources using extremely limited training data as few as 16 samples. GenTKG also highlights remarkable cross-domain generalizability with outperforming performance on unseen datasets without re-training, and in-domain generalizability regardless of time split in the same dataset. Our work reveals the huge potential of LLMs in the tKG domain and opens a new frontier for generative forecasting on tKGs.

We introduce AnyGPT, an any-to-any multimodal language model that utilizes discrete representations for the unified processing of various modalities, including speech, text, images, and music. AnyGPT can be trained stably without any alterations to the current large language model (LLM) architecture or training paradigms. Instead, it relies exclusively on data-level preprocessing, facilitating the seamless integration of new modalities into LLMs, akin to the incorporation of new languages. We build a multimodal text-centric dataset for multimodal alignment pre-training. Utilizing generative models, we synthesize the first large-scale any-to-any multimodal instruction dataset. It consists of 108k samples of multi-turn conversations that intricately interweave various modalities, thus equipping the model to handle arbitrary combinations of multimodal inputs and outputs. Experimental results demonstrate that AnyGPT is capable of facilitating any-to-any multimodal conversation while achieving performance comparable to specialized models across all modalities, proving that discrete representations can effectively and conveniently unify multiple modalities within a language model. Demos are shown in //junzhan2000.github.io/AnyGPT.github.io/

The White House Executive Order on Artificial Intelligence highlights the risks of large language models (LLMs) empowering malicious actors in developing biological, cyber, and chemical weapons. To measure these risks of malicious use, government institutions and major AI labs are developing evaluations for hazardous capabilities in LLMs. However, current evaluations are private, preventing further research into mitigating risk. Furthermore, they focus on only a few, highly specific pathways for malicious use. To fill these gaps, we publicly release the Weapons of Mass Destruction Proxy (WMDP) benchmark, a dataset of 4,157 multiple-choice questions that serve as a proxy measurement of hazardous knowledge in biosecurity, cybersecurity, and chemical security. WMDP was developed by a consortium of academics and technical consultants, and was stringently filtered to eliminate sensitive information prior to public release. WMDP serves two roles: first, as an evaluation for hazardous knowledge in LLMs, and second, as a benchmark for unlearning methods to remove such hazardous knowledge. To guide progress on unlearning, we develop CUT, a state-of-the-art unlearning method based on controlling model representations. CUT reduces model performance on WMDP while maintaining general capabilities in areas such as biology and computer science, suggesting that unlearning may be a concrete path towards reducing malicious use from LLMs. We release our benchmark and code publicly at //wmdp.ai

Most existing topic models rely on bag-of-words (BOW) representation, which limits their ability to capture word order information and leads to challenges with out-of-vocabulary (OOV) words in new documents. Contextualized word embeddings, however, show superiority in word sense disambiguation and effectively address the OOV issue. In this work, we introduce a novel neural topic model called the Contextlized Word Topic Model (CWTM), which integrates contextualized word embeddings from BERT. The model is capable of learning the topic vector of a document without BOW information. In addition, it can also derive the topic vectors for individual words within a document based on their contextualized word embeddings. Experiments across various datasets show that CWTM generates more coherent and meaningful topics compared to existing topic models, while also accommodating unseen words in newly encountered documents.

This paper investigates the integration and assessment of IntelliGame, a gamification plugin initially designed for Java development, within the realm of JavaScript unit testing. We aim to verify the generalizability of IntelliGame to JavaScript development and to provide valuable insights into the experiment's design. For this, we first customize IntelliGame for JavaScript, and then conduct a controlled experiment involving 152 participants utilizing the Jest testing framework, and finally examine its influence on testing behavior and the overall developer experience. The findings from this study provide valuable insights for improving JavaScript testing methodologies through the incorporation of gamification.

We propose an RNN-based efficient Ising model solver, the Criticality-ordered Recurrent Mean Field (CoRMF), for forward Ising problems. In its core, a criticality-ordered spin sequence of an $N$-spin Ising model is introduced by sorting mission-critical edges with greedy algorithm, such that an autoregressive mean-field factorization can be utilized and optimized with Recurrent Neural Networks (RNNs). Our method has two notable characteristics: (i) by leveraging the approximated tree structure of the underlying Ising graph, the newly-obtained criticality order enables the unification between variational mean-field and RNN, allowing the generally intractable Ising model to be efficiently probed with probabilistic inference; (ii) it is well-modulized, model-independent while at the same time expressive enough, and hence fully applicable to any forward Ising inference problems with minimal effort. Computationally, by using a variance-reduced Monte Carlo gradient estimator, CoRFM solves the Ising problems in a self-train fashion without data/evidence, and the inference tasks can be executed by directly sampling from RNN. Theoretically, we establish a provably tighter error bound than naive mean-field by using the matrix cut decomposition machineries. Numerically, we demonstrate the utility of this framework on a series of Ising datasets.

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

北京阿比特科技有限公司