With the advancing technology, the hardware gain of computers and the increase in the processing capacity of processors have facilitated the processing of instantaneous and real-time images. Face recognition processes are also studies in the field of image processing. Facial recognition processes are frequently used in security applications and commercial applications. Especially in the last 20 years, the high performances of artificial intelligence (AI) studies have contributed to the spread of these studies in many different fields. Education is one of them. The potential and advantages of using AI in education; can be grouped under three headings: student, teacher, and institution. One of the institutional studies may be the security of educational environments and the contribution of automation to education and training processes. From this point of view, deep learning methods, one of the sub-branches of AI, were used in this study. For object detection from images, a pioneering study has been designed and successfully implemented to keep records of students' entrance to the educational institution and to perform class attendance with images taken from the camera using image processing algorithms. The application of the study to real-life problems will be carried out in a school determined in the 2022-2023 academic year.
With the rapid transformation of computer hardware and algorithms, mobile networking has evolved from low data carrying capacity and high latency to better-optimized networks, either by enhancing the digital network or using different approaches to reduce network traffic. This paper discusses the big data applications and scheduling in the distributed networking and analyzes the opportunities and challenges of data management systems. The analysis shows that the big data scheduling in the cloud computing environment produces the most efficient way to transfer and synchronize data. Since scheduling problems and cloud models are very complex to analyze in different settings, we set it to the typical software defined networks. The development of cloud management models and coflow scheduling algorithm is proved to be the priority of the digital communications and networks development in the future.
Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We then apply the inverse Fourier transform to obtain the covariance function (according to the Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. We are the first to discover its rationale and effectiveness for PDE solving. Next,we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to greatly promote computational efficiency and scalability, without any low-rank approximations. We show the advantage of our method in systematic experiments.
As semiconductor power density is no longer constant with the technology process scaling down, modern CPUs are integrating capable data accelerators on chip, aiming to improve performance and efficiency for a wide range of applications and usages. One such accelerator is the Intel Data Streaming Accelerator (DSA) introduced in Intel 4th Generation Xeon Scalable CPUs (Sapphire Rapids). DSA targets data movement operations in memory that are common sources of overhead in datacenter workloads and infrastructure. In addition, it becomes much more versatile by supporting a wider range of operations on streaming data, such as CRC32 calculations, delta record creation/merging, and data integrity field (DIF) operations. This paper sets out to introduce the latest features supported by DSA, deep-dive into its versatility, and analyze its throughput benefits through a comprehensive evaluation. Along with the analysis of its characteristics, and the rich software ecosystem of DSA, we summarize several insights and guidelines for the programmer to make the most out of DSA, and use an in-depth case study of DPDK Vhost to demonstrate how these guidelines benefit a real application.
As control engineering methods are applied to increasingly complex systems, data-driven approaches for system identification appear as a promising alternative to physics-based modeling. While the Bayesian approaches prevalent for safety-critical applications usually rely on the availability of state measurements, the states of a complex system are often not directly measurable. It may then be necessary to jointly estimate the dynamics and the latent state, making the quantification of uncertainties and the design of controllers with formal performance guarantees considerably more challenging. This paper proposes a novel method for the computation of an optimal input trajectory for unknown nonlinear systems with latent states based on a combination of particle Markov chain Monte Carlo methods and scenario theory. Probabilistic performance guarantees are derived for the resulting input trajectory, and an approach to validate the performance of arbitrary control laws is presented. The effectiveness of the proposed method is demonstrated in a numerical simulation.
Heterogeneous systems, consisting of CPUs and GPUs, offer the capability to address the demands of compute- and data-intensive applications. However, programming such systems is challenging, requiring knowledge of various parallel programming frameworks. This paper introduces COMPAR, a component-based parallel programming framework that enables the exposure and selection of multiple implementation variants of components at runtime. The framework leverages compiler directive-based language extensions to annotate the source code and generate the necessary glue code for the StarPU runtime system. COMPAR provides a unified view of implementation variants and allows for intelligent selection based on runtime context. Our evaluation demonstrates the effectiveness of COMPAR through benchmark applications. The proposed approach simplifies heterogeneous parallel programming and promotes code reuse while achieving optimal performance.
Gaussian processes are frequently deployed as part of larger machine learning and decision-making systems, for instance in geospatial modeling, Bayesian optimization, or in latent Gaussian models. Within a system, the Gaussian process model needs to perform in a stable and reliable manner to ensure it interacts correctly with other parts of the system. In this work, we study the numerical stability of scalable sparse approximations based on inducing points. To do so, we first review numerical stability, and illustrate typical situations in which Gaussian process models can be unstable. Building on stability theory originally developed in the interpolation literature, we derive sufficient and in certain cases necessary conditions on the inducing points for the computations performed to be numerically stable. For low-dimensional tasks such as geospatial modeling, we propose an automated method for computing inducing points satisfying these conditions. This is done via a modification of the cover tree data structure, which is of independent interest. We additionally propose an alternative sparse approximation for regression with a Gaussian likelihood which trades off a small amount of performance to further improve stability. We provide illustrative examples showing the relationship between stability of calculations and predictive performance of inducing point methods on spatial tasks.
With the agile development process of most academic and corporate entities, designing a robust computational back-end system that can support their ever-changing data needs is a constantly evolving challenge. We propose the implementation of a data and language-agnostic system design that handles different data schemes and sources while subsequently providing researchers and developers a way to connect to it that is supported by a vast majority of programming languages. To validate the efficacy of a system with this proposed architecture, we integrate various data sources throughout the decentralized finance (DeFi) space, specifically from DeFi lending protocols, retrieving tens of millions of data points to perform analytics through this system. We then access and process the retrieved data through several different programming languages (R-Lang, Python, and Java). Finally, we analyze the performance of the proposed architecture in relation to other high-performance systems and explore how this system performs under a high computational load.
Given imbalanced data, it is hard to train a good classifier using deep learning because of the poor generalization of minority classes. Traditionally, the well-known synthetic minority oversampling technique (SMOTE) for data augmentation, a data mining approach for imbalanced learning, has been used to improve this generalization. However, it is unclear whether SMOTE also benefits deep learning. In this work, we study why the original SMOTE is insufficient for deep learning, and enhance SMOTE using soft labels. Connecting the resulting soft SMOTE with Mixup, a modern data augmentation technique, leads to a unified framework that puts traditional and modern data augmentation techniques under the same umbrella. A careful study within this framework shows that Mixup improves generalization by implicitly achieving uneven margins between majority and minority classes. We then propose a novel margin-aware Mixup technique that more explicitly achieves uneven margins. Extensive experimental results demonstrate that our proposed technique yields state-of-the-art performance on deep imbalanced classification while achieving superior performance on extremely imbalanced data. The code is open-sourced in our developed package //github.com/ntucllab/imbalanced-DL to foster future research in this direction.
This study examines the adaptation of the problem-solving studio to computer science education by combining it with pair programming. Pair programming is a software engineering practice in industry, but has seen mixed results in the classroom. Recent research suggests that pair programming has promise and potential to be an effective pedagogical tool, however what constitutes good instructional design and implementation for pair programming in the classroom is not clear. We developed a framework for instructional design for pair programming by adapting the problem-solving studio (PSS), a pedagogy originally from biomedical engineering. PSS involves teams of students solving open-ended problems with real-time feedback given by the instructor. Notably, PSS uses problems of adjustable difficulty to keep students of all levels engaged and functioning within the zone of proximal development. The course structure has three stages, first starting with demonstration, followed by a PSS session, then finishing with a debrief. We studied the combination of PSS and pair programming in a CS1 class over three years. Surveys of the students report a high level of engagement, learning, and motivation.
Unsupervised anomaly segmentation aims to detect patterns that are distinct from any patterns processed during training, commonly called abnormal or out-of-distribution patterns, without providing any associated manual segmentations. Since anomalies during deployment can lead to model failure, detecting the anomaly can enhance the reliability of models, which is valuable in high-risk domains like medical imaging. This paper introduces Masked Modality Cycles with Conditional Diffusion (MMCCD), a method that enables segmentation of anomalies across diverse patterns in multimodal MRI. The method is based on two fundamental ideas. First, we propose the use of cyclic modality translation as a mechanism for enabling abnormality detection. Image-translation models learn tissue-specific modality mappings, which are characteristic of tissue physiology. Thus, these learned mappings fail to translate tissues or image patterns that have never been encountered during training, and the error enables their segmentation. Furthermore, we combine image translation with a masked conditional diffusion model, which attempts to `imagine' what tissue exists under a masked area, further exposing unknown patterns as the generative model fails to recreate them. We evaluate our method on a proxy task by training on healthy-looking slices of BraTS2021 multi-modality MRIs and testing on slices with tumors. We show that our method compares favorably to previous unsupervised approaches based on image reconstruction and denoising with autoencoders and diffusion models.