Mining users' intents plays a crucial role in sequential recommendation. The recent approach, ICLRec, was introduced to extract underlying users' intents using contrastive learning and clustering. While it has shown effectiveness, the existing method suffers from complex and cumbersome alternating optimization, leading to two main issues. Firstly, the separation of representation learning and clustering optimization within a generalized expectation maximization (EM) framework often results in sub-optimal performance. Secondly, performing clustering on the entire dataset hampers scalability for large-scale industry data. To address these challenges, we propose a novel intent learning method called \underline{ODCRec}, which integrates representation learning into an \underline{O}nline \underline{D}ifferentiable \underline{C}lustering framework for \underline{Rec}ommendation. Specifically, we encode users' behavior sequences and initialize the cluster centers as differentiable network parameters. Additionally, we design a clustering loss that guides the networks to differentiate between different cluster centers and pull similar samples towards their respective cluster centers. This allows simultaneous optimization of recommendation and clustering using mini-batch data. Moreover, we leverage the learned cluster centers as self-supervision signals for representation learning, resulting in further enhancement of recommendation performance. Extensive experiments conducted on open benchmarks and industry data validate the superiority, effectiveness, and efficiency of our proposed ODCRec method. Code is available at: //github.com/yueliu1999/ELCRec.
Recent work has demonstrated that fine-tuning is a promising approach to `unlearn' concepts from large language models. However, fine-tuning can be expensive, as it requires both generating a set of examples and running iterations of fine-tuning to update the model. In this work, we show that simple guardrail-based approaches such as prompting and filtering can achieve unlearning results comparable to fine-tuning. We recommend that researchers investigate these lightweight baselines when evaluating the performance of more computationally intensive fine-tuning methods. While we do not claim that methods such as prompting or filtering are universal solutions to the problem of unlearning, our work suggests the need for evaluation metrics that can better separate the power of guardrails vs. fine-tuning, and highlights scenarios where guardrails themselves may be advantageous for unlearning, such as in generating examples for fine-tuning or unlearning when only API access is available.
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps. While black-boxing AI systems can make the user experience seamless, hiding the seams risks disempowering users to mitigate fallouts from AI mistakes. Instead of hiding these AI imperfections, can we leverage them to help the user? While Explainable AI (XAI) has predominantly tackled algorithmic opaqueness, we propose that seamful design can foster AI explainability by revealing and leveraging sociotechnical and infrastructural mismatches. We introduce the concept of Seamful XAI by (1) conceptually transferring "seams" to the AI context and (2) developing a design process that helps stakeholders anticipate and design with seams. We explore this process with 43 AI practitioners and real end-users, using a scenario-based co-design activity informed by real-world use cases. We found that the Seamful XAI design process helped users foresee AI harms, identify underlying reasons (seams), locate them in the AI's lifecycle, learn how to leverage seamful information to improve XAI and user agency. We share empirical insights, implications, and reflections on how this process can help practitioners anticipate and craft seams in AI, how seamfulness can improve explainability, empower end-users, and facilitate Responsible AI.
Multi-user massive MIMO is a promising candidate for future wireless communication systems. It enables users with different requirements to be connected to the same base station (BS) on the same set of resources. In uplink massive MU-MIMO, while users with different requirements are served, decoupled signal detection helps in using a user-specific detection scheme for every user. In this paper, we propose a low-complexity linear decoupling scheme called Sequential Decoupler (SD), which aids in the parallel detection of each user's data streams. The proposed algorithm shows significant complexity reduction, particularly when the number of users in the system increases. In the numerical simulations, it has been observed that the complexity of the proposed scheme is only 0.15% of the conventional Singular Value Decomposition (SVD) based decoupling and 47% to the pseudo-inverse based decoupling schemes when 80 users with two antennas each are served by the BS.
Recommender systems are vulnerable to injective attacks, which inject limited fake users into the platforms to manipulate the exposure of target items to all users. In this work, we identify that conventional injective attackers overlook the fact that each item has its unique potential audience, and meanwhile, the attack difficulty across different users varies. Blindly attacking all users will result in a waste of fake user budgets and inferior attack performance. To address these issues, we focus on an under-explored attack task called target user attacks, aiming at promoting target items to a particular user group. In addition, we formulate the varying attack difficulty as heterogeneous treatment effects through a causal lens and propose an Uplift-guided Budget Allocation (UBA) framework. UBA estimates the treatment effect on each target user and optimizes the allocation of fake user budgets to maximize the attack performance. Theoretical and empirical analysis demonstrates the rationality of treatment effect estimation methods of UBA. By instantiating UBA on multiple attackers, we conduct extensive experiments on three datasets under various settings with different target items, target users, fake user budgets, victim models, and defense models, validating the effectiveness and robustness of UBA.
Query Auto-Completion(QAC), as an important part of the modern search engine, plays a key role in complementing user queries and helping them refine their search intentions.Today's QAC systems in real-world scenarios face two major challenges:1)intention equivocality(IE): during the user's typing process,the prefix often contains a combination of characters and subwords, which makes the current intention ambiguous and difficult to model.2)intention transfer (IT):previous works make personalized recommendations based on users' historical sequences, but ignore the search intention transfer.However, the current intention extracted from prefix may be contrary to the historical preferences.
Tailoring outputs from large language models, like ChatGPT, to implicit user preferences remains a challenge despite their impressive generative capabilities. In this paper, we propose a tri-agent generation pipeline comprising a generator, an instructor, and an editor to enhance output personalization. The generator produces an initial output, the instructor automatically generates editing instructions based on user preferences, and the editor refines the output to align with those preferences. The inference-only large language model (ChatGPT) serves as both the generator and editor, with a smaller model acting as the instructor to guide output generation. We train the instructor using editor-steered reinforcement learning, leveraging feedback from a large-scale editor model to optimize instruction generation. Experimental results on two abstractive summarization datasets demonstrate the effectiveness of our approach in generating outputs that better meet user expectations. Code is available at \url{//github.com/Wendy-Xiao/chatgpt_editing_summ}
Algorithmic recourse provides explanations that help users overturn an unfavorable decision by a machine learning system. But so far very little attention has been paid to whether providing recourse is beneficial or not. We introduce an abstract learning-theoretic framework that compares the risks (i.e., expected losses) for classification with and without algorithmic recourse. This allows us to answer the question of when providing recourse is beneficial or harmful at the population level. Surprisingly, we find that there are many plausible scenarios in which providing recourse turns out to be harmful, because it pushes users to regions of higher class uncertainty and therefore leads to more mistakes. We further study whether the party deploying the classifier has an incentive to strategize in anticipation of having to provide recourse, and we find that sometimes they do, to the detriment of their users. Providing algorithmic recourse may therefore also be harmful at the systemic level. We confirm our theoretical findings in experiments on simulated and real-world data. All in all, we conclude that the current concept of algorithmic recourse is not reliably beneficial, and therefore requires rethinking.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.