Speech-driven gesture generation is highly challenging due to the random jitters of human motion. In addition, there is an inherent asynchronous relationship between human speech and gestures. To tackle these challenges, we introduce a novel quantization-based and phase-guided motion-matching framework. Specifically, we first present a gesture VQ-VAE module to learn a codebook to summarize meaningful gesture units. With each code representing a unique gesture, random jittering problems are alleviated effectively. We then use Levenshtein distance to align diverse gestures with different speech. Levenshtein distance based on audio quantization as a similarity metric of corresponding speech of gestures helps match more appropriate gestures with speech, and solves the alignment problem of speech and gestures well. Moreover, we introduce phase to guide the optimal gesture matching based on the semantics of context or rhythm of audio. Phase guides when text-based or speech-based gestures should be performed to make the generated gestures more natural. Extensive experiments show that our method outperforms recent approaches on speech-driven gesture generation. Our code, database, pre-trained models, and demos are available at //github.com/YoungSeng/QPGesture.
The Segment Anything Model (SAM) has established itself as a powerful zero-shot image segmentation model, employing interactive prompts such as points to generate masks. This paper presents SAM-PT, a method extending SAM's capability to tracking and segmenting anything in dynamic videos. SAM-PT leverages robust and sparse point selection and propagation techniques for mask generation, demonstrating that a SAM-based segmentation tracker can yield strong zero-shot performance across popular video object segmentation benchmarks, including DAVIS, YouTube-VOS, and MOSE. Compared to traditional object-centric mask propagation strategies, we uniquely use point propagation to exploit local structure information that is agnostic to object semantics. We highlight the merits of point-based tracking through direct evaluation on the zero-shot open-world Unidentified Video Objects (UVO) benchmark. To further enhance our approach, we utilize K-Medoids clustering for point initialization and track both positive and negative points to clearly distinguish the target object. We also employ multiple mask decoding passes for mask refinement and devise a point re-initialization strategy to improve tracking accuracy. Our code integrates different point trackers and video segmentation benchmarks and will be released at //github.com/SysCV/sam-pt.
We introduce a novel one-stage end-to-end multi-person 2D pose estimation algorithm, known as Joint Coordinate Regression and Association (JCRA), that produces human pose joints and associations without requiring any post-processing. The proposed algorithm is fast, accurate, effective, and simple. The one-stage end-to-end network architecture significantly improves the inference speed of JCRA. Meanwhile, we devised a symmetric network structure for both the encoder and decoder, which ensures high accuracy in identifying keypoints. It follows an architecture that directly outputs part positions via a transformer network, resulting in a significant improvement in performance. Extensive experiments on the MS COCO and CrowdPose benchmarks demonstrate that JCRA outperforms state-of-the-art approaches in both accuracy and efficiency. Moreover, JCRA demonstrates 69.2 mAP and is 78\% faster at inference acceleration than previous state-of-the-art bottom-up algorithms. The code for this algorithm will be publicly available.
Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute significant diversity and vividity as a vital component of avatars. However, building 3D character face models usually requires a heavy workload with commercial tools, even for experienced artists. Various existing sketch-based tools fail to support amateurs in modeling diverse facial shapes and rich geometric details. In this paper, we present SketchMetaFace - a sketching system targeting amateur users to model high-fidelity 3D faces in minutes. We carefully design both the user interface and the underlying algorithm. First, curvature-aware strokes are adopted to better support the controllability of carving facial details. Second, considering the key problem of mapping a 2D sketch map to a 3D model, we develop a novel learning-based method termed "Implicit and Depth Guided Mesh Modeling" (IDGMM). It fuses the advantages of mesh, implicit, and depth representations to achieve high-quality results with high efficiency. In addition, to further support usability, we present a coarse-to-fine 2D sketching interface design and a data-driven stroke suggestion tool. User studies demonstrate the superiority of our system over existing modeling tools in terms of the ease to use and visual quality of results. Experimental analyses also show that IDGMM reaches a better trade-off between accuracy and efficiency. SketchMetaFace are available at //zhongjinluo.github.io/SketchMetaFace/.
This paper presents a novel object detector called DEYOv2, an improved version of the first-generation DEYO (DETR with YOLO) model. DEYOv2, similar to its predecessor, DEYOv2 employs a progressive reasoning approach to accelerate model training and enhance performance. The study delves into the limitations of one-to-one matching in optimization and proposes solutions to effectively address the issue, such as Rank Feature and Greedy Matching. This approach enables the third stage of DEYOv2 to maximize information acquisition from the first and second stages without needing NMS, achieving end-to-end optimization. By combining dense queries, sparse queries, one-to-many matching, and one-to-one matching, DEYOv2 leverages the advantages of each method. It outperforms all existing query-based end-to-end detectors under the same settings. When using ResNet-50 as the backbone and multi-scale features on the COCO dataset, DEYOv2 achieves 51.1 AP and 51.8 AP in 12 and 24 epochs, respectively. Compared to the end-to-end model DINO, DEYOv2 provides significant performance gains of 2.1 AP and 1.4 AP in the two epoch settings. To the best of our knowledge, DEYOv2 is the first fully end-to-end object detector that combines the respective strengths of classical detectors and query-based detectors.
We propose and analyze unfitted finite element approximations for the two-phase incompressible Navier--Stokes flow in an axisymmetric setting. The discretized schemes are based on an Eulerian weak formulation for the Navier--Stokes equation in the 2d-meridian halfplane, together with a parametric formulation for the generating curve of the evolving interface. We use the lowest order Taylor--Hood and piecewise linear elements for discretizing the Navier--Stokes formulation in the bulk and the moving interface, respectively. We discuss a variety of schemes, amongst which is a linear scheme that enjoys an equidistribution property on the discrete interface and good volume conservation. An alternative scheme can be shown to be unconditionally stable and to conserve the volume of the two phases exactly. Numerical results are presented to show the robustness and accuracy of the introduced methods for simulating both rising bubble and oscillating droplet experiments.
We present Magic123, a two-stage coarse-to-fine approach for high-quality, textured 3D meshes generation from a single unposed image in the wild using both2D and 3D priors. In the first stage, we optimize a neural radiance field to produce a coarse geometry. In the second stage, we adopt a memory-efficient differentiable mesh representation to yield a high-resolution mesh with a visually appealing texture. In both stages, the 3D content is learned through reference view supervision and novel views guided by a combination of 2D and 3D diffusion priors. We introduce a single trade-off parameter between the 2D and 3D priors to control exploration (more imaginative) and exploitation (more precise) of the generated geometry. Additionally, we employ textual inversion and monocular depth regularization to encourage consistent appearances across views and to prevent degenerate solutions, respectively. Magic123 demonstrates a significant improvement over previous image-to-3D techniques, as validated through extensive experiments on synthetic benchmarks and diverse real-world images. Our code, models, and generated 3D assets are available at //github.com/guochengqian/Magic123.
We investigate time-optimal Multi-Robot Coverage Path Planning (MCPP) for both unweighted and weighted terrains, which aims to minimize the coverage time, defined as the maximum travel time of all robots. Specifically, we focus on a reduction from MCPP to Rooted Min-Max Tree Cover (RMMTC). For the first time, we propose a Mixed Integer Programming (MIP) model to optimally solve RMMTC, resulting in an MCPP solution with a coverage time that is provably at most four times the optimal. Moreover, we propose two suboptimal yet effective heuristics that reduce the number of variables in the MIP model, thus improving its efficiency for large-scale MCPP instances. We show that both heuristics result in reduced-size MIP models that remain complete (i.e., guarantee to find a solution if one exists) for all RMMTC instances. Additionally, we explore the use of model optimization warm-startup to further improve the efficiency of both the original MIP model and the reduced-size MIP models. We validate the effectiveness of our MIP-based MCPP planner through experiments that compare it with two state-of-the-art MCPP planners on various instances, demonstrating a reduction in the coverage time by an average of 42.42% and 39.16% over them, respectively.
Object detection in 3D is a crucial aspect in the context of autonomous vehicles and drones. However, prototyping detection algorithms is time-consuming and costly in terms of energy and environmental impact. To address these challenges, one can check the effectiveness of different models by training on a subset of the original training set. In this paper, we present a comparison of three algorithms for selecting such a subset - random sampling, random per class sampling, and our proposed MONSPeC (Maximum Object Number Sampling per Class). We provide empirical evidence for the superior effectiveness of random per class sampling and MONSPeC over basic random sampling. By replacing random sampling with one of the more efficient algorithms, the results obtained on the subset are more likely to transfer to the results on the entire dataset. The code is available at: //github.com/vision-agh/monspec.
As AI-generated text increasingly resembles human-written content, the ability to detect machine-generated text becomes crucial. To address this challenge, we present GPTWatermark, a robust and high-quality solution designed to ascertain whether a piece of text originates from a specific model. Our approach extends existing watermarking strategies and employs a fixed group design to enhance robustness against editing and paraphrasing attacks. We show that our watermarked language model enjoys strong provable guarantees on generation quality, correctness in detection, and security against evasion attacks. Experimental results on various large language models (LLMs) and diverse datasets demonstrate that our method achieves superior detection accuracy and comparable generation quality in perplexity, thus promoting the responsible use of LLMs.
Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.