Efficient sampling from a high-dimensional Gaussian distribution is an old but high-stake issue. Vanilla Cholesky samplers imply a computational cost and memory requirements which can rapidly become prohibitive in high dimension. To tackle these issues, multiple methods have been proposed from different communities ranging from iterative numerical linear algebra to Markov chain Monte Carlo (MCMC) approaches. Surprisingly, no complete review and comparison of these methods have been conducted. This paper aims at reviewing all these approaches by pointing out their differences, close relations, benefits and limitations. In addition to this state of the art, this paper proposes a unifying Gaussian simulation framework by deriving a stochastic counterpart of the celebrated proximal point algorithm in optimization. This framework offers a novel and unifying revisit of most of the existing MCMC approaches while extending them. Guidelines to choose the appropriate Gaussian simulation method for a given sampling problem in high dimension are proposed and illustrated with numerical examples.
Gaussian processes (GPs) are important probabilistic tools for inference and learning in spatio-temporal modelling problems such as those in climate science and epidemiology. However, existing GP approximations do not simultaneously support large numbers of off-the-grid spatial data-points and long time-series which is a hallmark of many applications. Pseudo-point approximations, one of the gold-standard methods for scaling GPs to large data sets, are well suited for handling off-the-grid spatial data. However, they cannot handle long temporal observation horizons effectively reverting to cubic computational scaling in the time dimension. State space GP approximations are well suited to handling temporal data, if the temporal GP prior admits a Markov form, leading to linear complexity in the number of temporal observations, but have a cubic spatial cost and cannot handle off-the-grid spatial data. In this work we show that there is a simple and elegant way to combine pseudo-point methods with the state space GP approximation framework to get the best of both worlds. The approach hinges on a surprising conditional independence property which applies to space--time separable GPs. We demonstrate empirically that the combined approach is more scalable and applicable to a greater range of spatio-temporal problems than either method on its own.
The estimation of the probability of rare events is an important task in reliability and risk assessment. We consider failure events that are expressed in terms of a limit-state function, which depends on the solution of a partial differential equation (PDE). In many applications, the PDE cannot be solved analytically. We can only evaluate an approximation of the exact PDE solution. Therefore, the probability of rare events is estimated with respect to an approximation of the limit-state function. This leads to an approximation error in the estimate of the probability of rare events. Indeed, we prove an error bound for the approximation error of the probability of failure, which behaves like the discretization accuracy of the PDE multiplied by an approximation of the probability of failure, the first order reliability method (FORM) estimate. This bound requires convexity of the failure domain. For non-convex failure domains, we prove an error bound for the relative error of the FORM estimate. Hence, we derive a relationship between the required accuracy of the probability of rare events estimate and the PDE discretization level. This relationship can be used to guide practicable reliability analyses and, for instance, multilevel methods.
The Cox model is an indispensable tool for time-to-event analysis, particularly in biomedical research. However, medicine is undergoing a profound transformation, generating data at an unprecedented scale, which opens new frontiers to study and understand diseases. With the wealth of data collected, new challenges for statistical inference arise, as datasets are often high dimensional, exhibit an increasing number of measurements at irregularly spaced time points, and are simply too large to fit in memory. Many current implementations for time-to-event analysis are ill-suited for these problems as inference is computationally demanding and requires access to the full data at once. Here we propose a Bayesian version for the counting process representation of Cox's partial likelihood for efficient inference on large-scale datasets with millions of data points and thousands of time-dependent covariates. Through the combination of stochastic variational inference and a reweighting of the log-likelihood, we obtain an approximation for the posterior distribution that factorizes over subsamples of the data, enabling the analysis in big data settings. Crucially, the method produces viable uncertainty estimates for large-scale and high-dimensional datasets. We show the utility of our method through a simulation study and an application to myocardial infarction in the UK Biobank.
The performance of a reinforcement learning (RL) system depends on the computational architecture used to approximate a value function. Deep learning methods provide both optimization techniques and architectures for approximating nonlinear functions from noisy, high-dimensional observations. However, prevailing optimization techniques are not designed for strictly-incremental online updates. Nor are standard architectures designed for observations with an a priori unknown structure: for example, light sensors randomly dispersed in space. This paper proposes an online RL prediction algorithm with an adaptive architecture that efficiently finds useful nonlinear features. The algorithm is evaluated in a spatial domain with high-dimensional, stochastic observations. The algorithm outperforms non-adaptive baseline architectures and approaches the performance of an architecture given side-channel information. These results are a step towards scalable RL algorithms for more general problems, where the observation structure is not available.
Bayesian phylogenetic inference is often conducted via local or sequential search over topologies and branch lengths using algorithms such as random-walk Markov chain Monte Carlo (MCMC) or Combinatorial Sequential Monte Carlo (CSMC). However, when MCMC is used for evolutionary parameter learning, convergence requires long runs with inefficient exploration of the state space. We introduce Variational Combinatorial Sequential Monte Carlo (VCSMC), a powerful framework that establishes variational sequential search to learn distributions over intricate combinatorial structures. We then develop nested CSMC, an efficient proposal distribution for CSMC and prove that nested CSMC is an exact approximation to the (intractable) locally optimal proposal. We use nested CSMC to define a second objective, VNCSMC which yields tighter lower bounds than VCSMC. We show that VCSMC and VNCSMC are computationally efficient and explore higher probability spaces than existing methods on a range of tasks.
Without higher moment assumptions, this note establishes the decay of the Kolmogorov distance in a central limit theorem for L\'evy processes. This theorem can be viewed as a continuous-time extension of the classical random walk result by Friedman, Katz and Koopmans.
Auxiliary particle filters (APFs) are a class of sequential Monte Carlo (SMC) methods for Bayesian inference in state-space models. In their original derivation, APFs operate in an extended state space using an auxiliary variable to improve inference. In this work, we propose optimized auxiliary particle filters, a framework where the traditional APF auxiliary variables are interpreted as weights in an importance sampling mixture proposal. Under this interpretation, we devise a mechanism for proposing the mixture weights that is inspired by recent advances in multiple and adaptive importance sampling. In particular, we propose to select the mixture weights by formulating a convex optimization problem, with the aim of approximating the filtering posterior at each timestep. Further, we propose a weighting scheme that generalizes previous results on the APF (Pitt et al. 2012), proving unbiasedness and consistency of our estimators. Our framework demonstrates significantly improved estimates on a range of metrics compared to state-of-the-art particle filters at similar computational complexity in challenging and widely used dynamical models.
Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.
We present an end-to-end framework for solving the Vehicle Routing Problem (VRP) using reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy gradient algorithm to optimize its parameters, the trained model produces the solution as a sequence of consecutive actions in real time, without the need to re-train for every new problem instance. On capacitated VRP, our approach outperforms classical heuristics and Google's OR-Tools on medium-sized instances in solution quality with comparable computation time (after training). We demonstrate how our approach can handle problems with split delivery and explore the effect of such deliveries on the solution quality. Our proposed framework can be applied to other variants of the VRP such as the stochastic VRP, and has the potential to be applied more generally to combinatorial optimization problems.
Owing to the recent advances in "Big Data" modeling and prediction tasks, variational Bayesian estimation has gained popularity due to their ability to provide exact solutions to approximate posteriors. One key technique for approximate inference is stochastic variational inference (SVI). SVI poses variational inference as a stochastic optimization problem and solves it iteratively using noisy gradient estimates. It aims to handle massive data for predictive and classification tasks by applying complex Bayesian models that have observed as well as latent variables. This paper aims to decentralize it allowing parallel computation, secure learning and robustness benefits. We use Alternating Direction Method of Multipliers in a top-down setting to develop a distributed SVI algorithm such that independent learners running inference algorithms only require sharing the estimated model parameters instead of their private datasets. Our work extends the distributed SVI-ADMM algorithm that we first propose, to an ADMM-based networked SVI algorithm in which not only are the learners working distributively but they share information according to rules of a graph by which they form a network. This kind of work lies under the umbrella of `deep learning over networks' and we verify our algorithm for a topic-modeling problem for corpus of Wikipedia articles. We illustrate the results on latent Dirichlet allocation (LDA) topic model in large document classification, compare performance with the centralized algorithm, and use numerical experiments to corroborate the analytical results.