亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite significant progress in autonomous vehicles (AVs), the development of driving policies that ensure both the safety of AVs and traffic flow efficiency has not yet been fully explored. In this paper, we propose an enhanced human-in-the-loop reinforcement learning method, termed the Human as AI mentor-based deep reinforcement learning (HAIM-DRL) framework, which facilitates safe and efficient autonomous driving in mixed traffic platoon. Drawing inspiration from the human learning process, we first introduce an innovative learning paradigm that effectively injects human intelligence into AI, termed Human as AI mentor (HAIM). In this paradigm, the human expert serves as a mentor to the AI agent. While allowing the agent to sufficiently explore uncertain environments, the human expert can take control in dangerous situations and demonstrate correct actions to avoid potential accidents. On the other hand, the agent could be guided to minimize traffic flow disturbance, thereby optimizing traffic flow efficiency. In detail, HAIM-DRL leverages data collected from free exploration and partial human demonstrations as its two training sources. Remarkably, we circumvent the intricate process of manually designing reward functions; instead, we directly derive proxy state-action values from partial human demonstrations to guide the agents' policy learning. Additionally, we employ a minimal intervention technique to reduce the human mentor's cognitive load. Comparative results show that HAIM-DRL outperforms traditional methods in driving safety, sampling efficiency, mitigation of traffic flow disturbance, and generalizability to unseen traffic scenarios. The code and demo videos for this paper can be accessed at: //zilin-huang.github.io/HAIM-DRL-website/}{//zilin-huang.github.io/HAIM-DRL-website/.

相關內容

There is a well-known problem in Null Hypothesis Significance Testing: many statistically significant results fail to replicate in subsequent experiments. We show that this problem arises because standard `point-form null' significance tests consider only within-experiment but ignore between-experiment variation, and so systematically underestimate the degree of random variation in results. We give an extension to standard significance testing that addresses this problem by analysing both within- and between-experiment variation. This `distributional null' approach does not underestimate experimental variability and so is not overconfident in identifying significance; because this approach addresses between-experiment variation, it gives mathematically coherent estimates for the probability of replication of significant results. Using a large-scale replication dataset (the first `Many Labs' project), we show that many experimental results that appear statistically significant in standard tests are in fact consistent with random variation when both within- and between-experiment variation are taken into account in this approach. Further, grouping experiments in this dataset into `predictor-target' pairs we show that the predicted replication probabilities for target experiments produced in this approach (given predictor experiment results and the sample sizes of the two experiments) are strongly correlated with observed replication rates. Distributional null hypothesis testing thus gives researchers a statistical tool for identifying statistically significant and reliably replicable results.

Interacting with pedestrians understandably and efficiently is one of the toughest challenges faced by autonomous vehicles (AVs) due to the limitations of current algorithms and external human-machine interfaces (eHMIs). In this paper, we design eHMIs based on gestures inspired by the most popular method of interaction between pedestrians and human drivers. Eight common gestures were selected to convey AVs' yielding or non-yielding intentions at uncontrolled crosswalks from previous literature. Through a VR experiment (N1 = 31) and a following online survey (N2 = 394), we discovered significant differences in the usability of gesture-based eHMIs compared to current eHMIs. Good gesture-based eHMIs increase the efficiency of pedestrian-AV interaction while ensuring safety. Poor gestures, however, cause misinterpretation. The underlying reasons were explored: ambiguity regarding the recipient of the signal and whether the gestures are precise, polite, and familiar to pedestrians. Based on this empirical evidence, we discuss potential opportunities and provide valuable insights into developing comprehensible gesture-based eHMIs in the future to support better interaction between AVs and other road users.

We introduce Ground-Fusion, a low-cost sensor fusion simultaneous localization and mapping (SLAM) system for ground vehicles. Our system features efficient initialization, effective sensor anomaly detection and handling, real-time dense color mapping, and robust localization in diverse environments. We tightly integrate RGB-D images, inertial measurements, wheel odometer and GNSS signals within a factor graph to achieve accurate and reliable localization both indoors and outdoors. To ensure successful initialization, we propose an efficient strategy that comprises three different methods: stationary, visual, and dynamic, tailored to handle diverse cases. Furthermore, we develop mechanisms to detect sensor anomalies and degradation, handling them adeptly to maintain system accuracy. Our experimental results on both public and self-collected datasets demonstrate that Ground-Fusion outperforms existing low-cost SLAM systems in corner cases. We release the code and datasets at //github.com/SJTU-ViSYS/Ground-Fusion.

Recent advancements in autonomous driving have relied on data-driven approaches, which are widely adopted but face challenges including dataset bias, overfitting, and uninterpretability. Drawing inspiration from the knowledge-driven nature of human driving, we explore the question of how to instill similar capabilities into autonomous driving systems and summarize a paradigm that integrates an interactive environment, a driver agent, as well as a memory component to address this question. Leveraging large language models (LLMs) with emergent abilities, we propose the DiLu framework, which combines a Reasoning and a Reflection module to enable the system to perform decision-making based on common-sense knowledge and evolve continuously. Extensive experiments prove DiLu's capability to accumulate experience and demonstrate a significant advantage in generalization ability over reinforcement learning-based methods. Moreover, DiLu is able to directly acquire experiences from real-world datasets which highlights its potential to be deployed on practical autonomous driving systems. To the best of our knowledge, we are the first to leverage knowledge-driven capability in decision-making for autonomous vehicles. Through the proposed DiLu framework, LLM is strengthened to apply knowledge and to reason causally in the autonomous driving domain. Project page: //pjlab-adg.github.io/DiLu/

Designing distributed filtering circuits (DFCs) is complex and time-consuming, with the circuit performance relying heavily on the expertise and experience of electronics engineers. However, manual design methods tend to have exceedingly low-efficiency. This study proposes a novel end-to-end automated method for fabricating circuits to improve the design of DFCs. The proposed method harnesses reinforcement learning (RL) algorithms, eliminating the dependence on the design experience of engineers. Thus, it significantly reduces the subjectivity and constraints associated with circuit design. The experimental findings demonstrate clear improvements in both design efficiency and quality when comparing the proposed method with traditional engineer-driven methods. In particular, the proposed method achieves superior performance when designing complex or rapidly evolving DFCs. Furthermore, compared to existing circuit automation design techniques, the proposed method demonstrates superior design efficiency, highlighting the substantial potential of RL in circuit design automation.

In complex industrial and chemical process control rooms, effective decision-making is crucial for safety and effi- ciency. The experiments in this paper evaluate the impact and applications of an AI-based decision support system integrated into an improved human-machine interface, using dynamic influ- ence diagrams, a hidden Markov model, and deep reinforcement learning. The enhanced support system aims to reduce operator workload, improve situational awareness, and provide different intervention strategies to the operator adapted to the current state of both the system and human performance. Such a system can be particularly useful in cases of information overload when many alarms and inputs are presented all within the same time window, or for junior operators during training. A comprehensive cross-data analysis was conducted, involving 47 participants and a diverse range of data sources such as smartwatch metrics, eye- tracking data, process logs, and responses from questionnaires. The results indicate interesting insights regarding the effec- tiveness of the approach in aiding decision-making, decreasing perceived workload, and increasing situational awareness for the scenarios considered. Additionally, the results provide valuable insights to compare differences between styles of information gathering when using the system by individual participants. These findings are particularly relevant when predicting the overall performance of the individual participant and their capacity to successfully handle a plant upset and the alarms connected to it using process and human-machine interaction logs in real-time. These predictions enable the development of more effective intervention strategies.

In recent developments within the research community, the integration of Large Language Models (LLMs) in creating fully autonomous agents has garnered significant interest. Despite this, LLM-based agents frequently demonstrate notable shortcomings in adjusting to dynamic environments and fully grasping human needs. In this work, we introduce the problem of LLM-based human-agent collaboration for complex task-solving, exploring their synergistic potential. In addition, we propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC. This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process. We construct a human-agent collaboration dataset to train this policy model in an offline reinforcement learning environment. Our validation tests confirm the model's effectiveness. The results demonstrate that the synergistic efforts of humans and LLM-based agents significantly improve performance in complex tasks, primarily through well-planned, limited human intervention. Datasets and code are available at: //github.com/XueyangFeng/ReHAC.

Autonomous driving (AD) technology, leveraging artificial intelligence, strives for vehicle automation. End-toend strategies, emerging to simplify traditional driving systems by integrating perception, decision-making, and control, offer new avenues for advanced driving functionalities. Despite their potential, current challenges include data efficiency, training complexities, and poor generalization. This study addresses these issues with a novel end-to-end AD training model, enhancing system adaptability and intelligence. The model incorporates a Transformer module into the policy network, undergoing initial behavior cloning (BC) pre-training for update gradients. Subsequently, fine-tuning through reinforcement learning with human guidance (RLHG) adapts the model to specific driving environments, aiming to surpass the performance limits of imitation learning (IL). The fine-tuning process involves human interactions, guiding the model to acquire more efficient and safer driving behaviors through supervision, intervention, demonstration, and reward feedback. Simulation results demonstrate that this framework accelerates learning, achieving precise control and significantly enhancing safety and reliability. Compared to other advanced baseline methods, the proposed approach excels in challenging AD tasks. The introduction of the Transformer module and human-guided fine-tuning provides valuable insights and methods for research and applications in the AD field.

We propose a design method for a robust safety filter based on Input Constrained Control Barrier Functions (ICCBF) for car-like robots moving in complex environments. A robust ICCBF that can be efficiently implemented is obtained by learning a smooth function of the environment using Support Vector Machine regression. The method takes into account steering constraints and is validated in simulation and a real experiment.

Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Almost at the same time, deep learning has made breakthrough by several pioneers, three of them (also called fathers of deep learning), Hinton, Bengio and LeCun, won ACM Turin Award in 2019. This is a survey of autonomous driving technologies with deep learning methods. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Due to the limited space, we focus the analysis on several key areas, i.e. 2D and 3D object detection in perception, depth estimation from cameras, multiple sensor fusion on the data, feature and task level respectively, behavior modelling and prediction of vehicle driving and pedestrian trajectories.

北京阿比特科技有限公司