亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Schizophrenia is a debilitating, chronic mental disorder that significantly impacts an individual's cognitive abilities, behavior, and social interactions. It is characterized by subtle morphological changes in the brain, particularly in the gray matter. These changes are often imperceptible through manual observation, demanding an automated approach to diagnosis. This study introduces a deep learning methodology for the classification of individuals with Schizophrenia. We achieve this by implementing a diversified attention mechanism known as Spatial Sequence Attention (SSA) which is designed to extract and emphasize significant feature representations from structural MRI (sMRI). Initially, we employ the transfer learning paradigm by leveraging pre-trained DenseNet to extract initial feature maps from the final convolutional block which contains morphological alterations associated with Schizophrenia. These features are further processed by the proposed SSA to capture and emphasize intricate spatial interactions and relationships across volumes within the brain. Our experimental studies conducted on a clinical dataset have revealed that the proposed attention mechanism outperforms the existing Squeeze & Excitation Network for Schizophrenia classification.

相關內容

Bevacizumab is a widely studied targeted therapeutic drug used in conjunction with standard chemotherapy for the treatment of recurrent ovarian cancer. While its administration has shown to increase the progression-free survival (PFS) in patients with advanced stage ovarian cancer, the lack of identifiable biomarkers for predicting patient response has been a major roadblock in its effective adoption towards personalized medicine. In this work, we leverage the latest histopathology foundation models trained on large-scale whole slide image (WSI) datasets to extract ovarian tumor tissue features for predicting bevacizumab response from WSIs. Our extensive experiments across a combination of different histopathology foundation models and multiple instance learning (MIL) strategies demonstrate capability of these large models in predicting bevacizumab response in ovarian cancer patients with the best models achieving an AUC score of 0.86 and an accuracy score of 72.5%. Furthermore, our survival models are able to stratify high- and low-risk cases with statistical significance (p < 0.05) even among the patients with the aggressive subtype of high-grade serous ovarian carcinoma. This work highlights the utility of histopathology foundation models for the task of ovarian bevacizumab response prediction from WSIs. The high-attention regions of the WSIs highlighted by these models not only aid the model explainability but also serve as promising imaging biomarkers for treatment prognosis.

Measuring the impact of an environmental point source exposure on the risk of disease, like cancer or childhood asthma, is well-developed. Modeling how an environmental health hazard that is extensive in space, like a wastewater canal, impacts disease risk is not. We propose a novel Bayesian generative semiparametric model for characterizing the cumulative spatial exposure to an environmental health hazard that is not well-represented by a single point in space. The model couples a dose-response model with a log-Gaussian Cox process integrated against a distance kernel with an unknown length-scale. We show that this model is a well-defined Bayesian inverse model, namely that the posterior exists under a Gaussian process prior for the log-intensity of exposure, and that a simple integral approximation adequately controls the computational error. We quantify the finite-sample properties and the computational tractability of the discretization scheme in a simulation study. Finally, we apply the model to survey data on household risk of childhood diarrheal illness from exposure to a system of wastewater canals in Mezquital Valley, Mexico.

In recent years, precision treatment strategy have gained significant attention in medical research, particularly for patient care. We propose a novel framework for estimating conditional average treatment effects (CATE) in time-to-event data with competing risks, using ICU patients with sepsis as an illustrative example. Our approach, based on cumulative incidence functions and targeted maximum likelihood estimation (TMLE), achieves both asymptotic efficiency and double robustness. The primary contribution of this work lies in our derivation of the efficient influence function for the targeted causal parameter, CATE. We established the theoretical proofs for these properties, and subsequently confirmed them through simulations. Our TMLE framework is flexible, accommodating various regression and machine learning models, making it applicable in diverse scenarios. In order to identify variables contributing to treatment effect heterogeneity and to facilitate accurate estimation of CATE, we developed two distinct variable importance measures (VIMs). This work provides a powerful tool for optimizing personalized treatment strategies, furthering the pursuit of precision medicine.

Resilience is defined as the ability of a network to resist, adapt, and quickly recover from disruptions, and to continue to maintain an acceptable level of services from users' perspective. With the advent of future radio networks, including advanced 5G and upcoming 6G, critical services become integral to future networks, requiring uninterrupted service delivery for end users. Unfortunately, with the growing network complexity, user mobility and diversity, it becomes challenging to scale current resilience management techniques that rely on local optimizations to large dense network deployments. This paper aims to address this problem by globally optimizing the resilience of a dense multi-cell network based on multi-agent deep reinforcement learning. Specifically, our proposed solution can dynamically tilt cell antennas and reconfigure transmit power to mitigate outages and increase both coverage and service availability. A multi-objective optimization problem is formulated to simultaneously satisfy resiliency constraints while maximizing the service quality in the network area in order to minimize the impact of outages on neighbouring cells. Extensive simulations then demonstrate that with our proposed solution, the average service availability in terms of user throughput can be increased by up to 50-60% on average, while reaching a coverage availability of 99% in best cases.

Adversarial examples, crafted by adding perturbations imperceptible to humans, can deceive neural networks. Recent studies identify the adversarial transferability across various models, \textit{i.e.}, the cross-model attack ability of adversarial samples. To enhance such adversarial transferability, existing input transformation-based methods diversify input data with transformation augmentation. However, their effectiveness is limited by the finite number of available transformations. In our study, we introduce a novel approach named Learning to Transform (L2T). L2T increases the diversity of transformed images by selecting the optimal combination of operations from a pool of candidates, consequently improving adversarial transferability. We conceptualize the selection of optimal transformation combinations as a trajectory optimization problem and employ a reinforcement learning strategy to effectively solve the problem. Comprehensive experiments on the ImageNet dataset, as well as practical tests with Google Vision and GPT-4V, reveal that L2T surpasses current methodologies in enhancing adversarial transferability, thereby confirming its effectiveness and practical significance. The code is available at //github.com/RongyiZhu/L2T.

For unforeseen emergencies, such as natural disasters and pandemic events, it is highly demanded to cope with the explosive growth of mobile data traffic in extremely critical environments. An Unmanned aerial vehicle (UAV) fleet is an effective way to facilitate the Emergency wireless COmmunication NETwork (EcoNet). In this article, a MUlti-tier Heterogeneous UAV Network (MuHun), which is with different UAV fleets in different altitudes, is proposed to flexibly serve various emergencies. We refresh the key performance indicators of full coverage, network capacity, low latency, and energy efficiency in harsh environments. Then, we present the special challenges regarding shadowing-dominated complex channel model, energy supply limited short-endurance, various communication mechanisms coexistence, and communication island for underground users in UAV-based EcoNet, followed by the MuHun-based EcoNet architecture and its advantages. Furthermore, some potential solutions such as the new hybrid-channel adapted resource allocation, reconfigurable intelligent surface assisted UAV communications, competitive heterogenous-networks, and magnetic induction based air-to-ground/underground communications are discussed to effectively achieve full coverage, high capacity, high energy efficiency, and diverse qualities of services for EcoNets in harsh environments.

There exists an invisible barrier between healthcare professionals' perception of a patient's clinical experience and the reality. This barrier may be induced by the environment that hinders patients from sharing their experiences openly with healthcare professionals. As patients are observed to discuss and exchange knowledge more candidly on social media, valuable insights can be leveraged from these platforms. However, the abundance of non-patient posts on social media necessitates filtering out such irrelevant content to distinguish the genuine voices of patients, a task we refer to as patient voice classification. In this study, we analyse the importance of linguistic characteristics in accurately classifying patient voices. Our findings underscore the essential role of linguistic and statistical text similarity analysis in identifying common patterns among patient groups. These results allude to even starker differences in the way patients express themselves at a disease level and across various therapeutic domains. Additionally, we fine-tuned a pre-trained Language Model on the combined datasets with similar linguistic patterns, resulting in a highly accurate automatic patient voice classification. Being the pioneering study on the topic, our focus on extracting authentic patient experiences from social media stands as a crucial step towards advancing healthcare standards and fostering a patient-centric approach.

Detecting the anomaly of human behavior is paramount to timely recognizing endangering situations, such as street fights or elderly falls. However, anomaly detection is complex since anomalous events are rare and because it is an open set recognition task, i.e., what is anomalous at inference has not been observed at training. We propose COSKAD, a novel model that encodes skeletal human motion by a graph convolutional network and learns to COntract SKeletal kinematic embeddings onto a latent hypersphere of minimum volume for Video Anomaly Detection. We propose three latent spaces: the commonly-adopted Euclidean and the novel spherical and hyperbolic. All variants outperform the state-of-the-art on the most recent UBnormal dataset, for which we contribute a human-related version with annotated skeletons. COSKAD sets a new state-of-the-art on the human-related versions of ShanghaiTech Campus and CUHK Avenue, with performance comparable to video-based methods. Source code and dataset will be released upon acceptance.

The diversity in disease profiles and therapeutic approaches between hospitals and health professionals underscores the need for patient-centric personalized strategies in healthcare. Alongside this, similarities in disease progression across patients can be utilized to improve prediction models in survival analysis. The need for patient privacy and the utility of prediction models can be simultaneously addressed in the framework of Federated Learning (FL). This paper outlines an approach in the domain of federated survival analysis, specifically the Cox Proportional Hazards (CoxPH) model, with a specific focus on mitigating data heterogeneity and elevating model performance. We present an FL approach that employs feature-based clustering to enhance model accuracy across synthetic datasets and real-world applications, including the Surveillance, Epidemiology, and End Results (SEER) database. Furthermore, we consider an event-based reporting strategy that provides a dynamic approach to model adaptation by responding to local data changes. Our experiments show the efficacy of our approach and discuss future directions for a practical application of FL in healthcare.

Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.

北京阿比特科技有限公司