亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) have achieved remarkable performance on a wide range of tasks. However, recent studies have shown that LLMs can memorize training data and simple repeated tokens can trick the model to leak the data. In this paper, we take a step further and show that certain special characters or their combinations with English letters are stronger memory triggers, leading to more severe data leakage. The intuition is that, since LLMs are trained with massive data that contains a substantial amount of special characters (e.g. structural symbols {, } of JSON files, and @, # in emails and online posts), the model may memorize the co-occurrence between these special characters and the raw texts. This motivates us to propose a simple but effective Special Characters Attack (SCA) to induce training data leakage. Our experiments verify the high effectiveness of SCA against state-of-the-art LLMs: they can leak diverse training data, such as code corpus, web pages, and personally identifiable information, and sometimes generate non-stop outputs as a byproduct. We further show that the composition of the training data corpus can be revealed by inspecting the leaked data -- one crucial piece of information for pre-training high-performance LLMs. Our work can help understand the sensitivity of LLMs to special characters and identify potential areas for improvement.

相關內容

Recently proposed long-form question answering (QA) systems, supported by large language models (LLMs), have shown promising capabilities. Yet, attributing and verifying their generated abstractive answers can be difficult, and automatically evaluating their accuracy remains an ongoing challenge. In this work, we introduce a new QA task for answering multi-answer questions by summarizing multiple diverse sources in a semi-extractive fashion. Specifically, Semi-extractive Multi-source QA (SEMQA) requires models to output a comprehensive answer, while mixing factual quoted spans -- copied verbatim from given input sources -- and non-factual free-text connectors that glue these spans together into a single cohesive passage. This setting bridges the gap between the outputs of well-grounded but constrained extractive QA systems and more fluent but harder to attribute fully abstractive answers. Particularly, it enables a new mode for language models that leverages their advanced language generation capabilities, while also producing fine in-line attributions by-design that are easy to verify, interpret, and evaluate. To study this task, we create the first dataset of this kind, QuoteSum, with human-written semi-extractive answers to natural and generated questions, and define text-based evaluation metrics. Experimenting with several LLMs in various settings, we find this task to be surprisingly challenging, demonstrating the importance of QuoteSum for developing and studying such consolidation capabilities.

We consider the issue of calibration in large language models (LLM). Recent studies have found that common interventions such as instruction tuning often result in poorly calibrated LLMs. Although calibration is well-explored in traditional applications, calibrating LLMs is uniquely challenging. These challenges stem as much from the severe computational requirements of LLMs as from their versatility, which allows them to be applied to diverse tasks. Addressing these challenges, we propose THERMOMETER, a calibration approach tailored to LLMs. THERMOMETER learns an auxiliary model, given data from multiple tasks, for calibrating a LLM. It is computationally efficient, preserves the accuracy of the LLM, and produces better-calibrated responses for new tasks. Extensive empirical evaluations across various benchmarks demonstrate the effectiveness of the proposed method.

The advent of large language models (LLMs) like GPT-4 has catalyzed the exploration of multi-task learning (MTL), in which a single model demonstrates proficiency across diverse tasks. Task arithmetic has emerged as a cost-effective approach for MTL. It enables performance enhancement across multiple tasks by adding their corresponding task vectors to a pre-trained model. However, the current lack of a method that can simultaneously achieve optimal performance, computational efficiency, and data privacy limits their application to LLMs. In this paper, we propose \textbf{M}odel \textbf{E}xclusive \textbf{T}ask \textbf{A}rithmetic for merging \textbf{GPT}-scale models, which formalizes the objective of model merging into a multi-task learning framework, aiming to minimize the average loss difference between the merged model and each individual task model. Since data privacy limits the use of multi-task training data, we leverage LLMs' local linearity and task vectors' orthogonality to separate the data term and scaling coefficients term and derive a model-exclusive task arithmetic method. Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs.Extensive experiments demonstrate that MetaGPT leads to improvements in task arithmetic and achieves state-of-the-art performance on multiple tasks.

Large language models (LLMs) have recently experienced tremendous popularity and are widely used from casual conversations to AI-driven programming. However, despite their considerable success, LLMs are not entirely reliable and can give detailed guidance on how to conduct harmful or illegal activities. While safety measures can reduce the risk of such outputs, adversarial jailbreak attacks can still exploit LLMs to produce harmful content. These jailbreak templates are typically manually crafted, making large-scale testing challenging. In this paper, we introduce GPTFuzz, a novel black-box jailbreak fuzzing framework inspired by the AFL fuzzing framework. Instead of manual engineering, GPTFuzz automates the generation of jailbreak templates for red-teaming LLMs. At its core, GPTFuzz starts with human-written templates as initial seeds, then mutates them to produce new templates. We detail three key components of GPTFuzz: a seed selection strategy for balancing efficiency and variability, mutate operators for creating semantically equivalent or similar sentences, and a judgment model to assess the success of a jailbreak attack. We evaluate GPTFuzz against various commercial and open-source LLMs, including ChatGPT, LLaMa-2, and Vicuna, under diverse attack scenarios. Our results indicate that GPTFuzz consistently produces jailbreak templates with a high success rate, surpassing human-crafted templates. Remarkably, GPTFuzz achieves over 90% attack success rates against ChatGPT and Llama-2 models, even with suboptimal initial seed templates. We anticipate that GPTFuzz will be instrumental for researchers and practitioners in examining LLM robustness and will encourage further exploration into enhancing LLM safety.

Large language models (LLMs) have achieved remarkable success but still tend to generate factually erroneous responses, a phenomenon known as hallucination. A recent trend is to use preference learning to fine-tune models to align with factuality. However, existing work primarily evaluates fine-tuned models on in-domain (ID) datasets and the factuality on out-of-domain (OOD) datasets remains underexplored. In this paper, we conduct a comprehensive evaluation of the factuality of different models tuned by various preference learning algorithms and demonstrate that their performance on OOD datasets either increases minimally or decreases. Subsequently, we reveal that the main cause of model's failure to uphold factuality under a distribution shift is \textbf{under-alignment}, rather than \textbf{over-alignment}, by analyzing the token distribution shift of the models before and after tuning. Finally, we propose \textbf{APEFT} (\textbf{A}tomic \textbf{P}reference \textbf{E}nhanced \textbf{F}actuality \textbf{T}uning), a framework that enhances model's awareness of factuality at the granularity of individual facts. Extensive experiments demonstrate that APEFT improves model performance by an average of $\boldsymbol{3.45\%}$ on both ID and OOD datasets, which is highly effective.

Natural language question answering (QA) over structured data sources such as tables and knowledge graphs (KGs) have been widely investigated, for example with Large Language Models (LLMs). The main solutions include question to formal query parsing and retrieval-based answer generation. However, current methods of the former often suffer from weak generalization, failing to dealing with multiple sources simultaneously, while the later is limited in trustfulness. In this paper, we propose UnifiedTQA, a trustful QA framework that can simultaneously support multiple types of structured data in a unified way. To this end, it adopts an LLM-friendly and unified knowledge representation method called Condition Graph (CG), and uses an LLM and demonstration-based two-level method for CG querying. For enhancement, it is also equipped with dynamic demonstration retrieval. We have evaluated UnifiedTQA with 5 benchmarks covering 3 types of structured data. It outperforms 2 existing unified structured data QA methods and in comparison with the baselines that are specific to a data type, it achieves state-of-the-art on 2 of them. Further more, we demonstrates potential of our method for more general QA tasks, QA over mixed structured data and QA across structured data.

Recent years have witnessed remarkable progress made in large language models (LLMs). Such advancements, while garnering significant attention, have concurrently elicited various concerns. The potential of these models is undeniably vast; however, they may yield texts that are imprecise, misleading, or even detrimental. Consequently, it becomes paramount to employ alignment techniques to ensure these models to exhibit behaviors consistent with human values. This survey endeavors to furnish an extensive exploration of alignment methodologies designed for LLMs, in conjunction with the extant capability research in this domain. Adopting the lens of AI alignment, we categorize the prevailing methods and emergent proposals for the alignment of LLMs into outer and inner alignment. We also probe into salient issues including the models' interpretability, and potential vulnerabilities to adversarial attacks. To assess LLM alignment, we present a wide variety of benchmarks and evaluation methodologies. After discussing the state of alignment research for LLMs, we finally cast a vision toward the future, contemplating the promising avenues of research that lie ahead. Our aspiration for this survey extends beyond merely spurring research interests in this realm. We also envision bridging the gap between the AI alignment research community and the researchers engrossed in the capability exploration of LLMs for both capable and safe LLMs.

Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.

Deep learning has been the mainstream technique in natural language processing (NLP) area. However, the techniques require many labeled data and are less generalizable across domains. Meta-learning is an arising field in machine learning studying approaches to learn better learning algorithms. Approaches aim at improving algorithms in various aspects, including data efficiency and generalizability. Efficacy of approaches has been shown in many NLP tasks, but there is no systematic survey of these approaches in NLP, which hinders more researchers from joining the field. Our goal with this survey paper is to offer researchers pointers to relevant meta-learning works in NLP and attract more attention from the NLP community to drive future innovation. This paper first introduces the general concepts of meta-learning and the common approaches. Then we summarize task construction settings and application of meta-learning for various NLP problems and review the development of meta-learning in NLP community.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司