With the advent of vehicles equipped with advanced driver-assistance systems, such as adaptive cruise control (ACC) and other automated driving features, the potential for cyberattacks on these automated vehicles (AVs) has emerged. While overt attacks that force vehicles to collide may be easily identified, more insidious attacks, which only slightly alter driving behavior, can result in network-wide increases in congestion, fuel consumption, and even crash risk without being easily detected. To address the detection of such attacks, we first present a traffic model framework for three types of potential cyberattacks: malicious manipulation of vehicle control commands, false data injection attacks on sensor measurements, and denial-of-service (DoS) attacks. We then investigate the impacts of these attacks at both the individual vehicle (micro) and traffic flow (macro) levels. A novel generative adversarial network (GAN)-based anomaly detection model is proposed for real-time identification of such attacks using vehicle trajectory data. We provide numerical evidence {to demonstrate} the efficacy of our machine learning approach in detecting cyberattacks on ACC-equipped vehicles. The proposed method is compared against some recently proposed neural network models and observed to have higher accuracy in identifying anomalous driving behaviors of ACC vehicles.
Recording the provenance of scientific computation results is key to the support of traceability, reproducibility and quality assessment of data products. Several data models have been explored to address this need, providing representations of workflow plans and their executions as well as means of packaging the resulting information for archiving and sharing. However, existing approaches tend to lack interoperable adoption across workflow management systems. In this work we present Workflow Run RO-Crate, an extension of RO-Crate (Research Object Crate) and Schema.org to capture the provenance of the execution of computational workflows at different levels of granularity and bundle together all their associated products (inputs, outputs, code, etc.). The model is supported by a diverse, open community that runs regular meetings, discussing development, maintenance and adoption aspects. Workflow Run RO-Crate is already implemented by several workflow management systems, allowing interoperable comparisons between workflow runs from heterogeneous systems. We describe the model, its alignment to standards such as W3C PROV, and its implementation in six workflow systems. Finally, we illustrate the application of Workflow Run RO-Crate in two use cases of machine learning in the digital image analysis domain. A corresponding RO-Crate for this article is at //w3id.org/ro/doi/10.5281/zenodo.10368989
Forecast combination involves using multiple forecasts to create a single, more accurate prediction. Recently, feature-based forecasting has been employed to either select the most appropriate forecasting models or to optimize the weights of their combination. In this paper, we present a multi-task optimization paradigm that focuses on solving both problems simultaneously and enriches current operational research approaches to forecasting. In essence, it incorporates an additional learning and optimization task into the standard feature-based forecasting approach, focusing on the identification of an optimal set of forecasting methods. During the training phase, an optimization model with linear constraints and quadratic objective function is employed to identify accurate and diverse methods for each time series. Moreover, within the training phase, a neural network is used to learn the behavior of that optimization model. Once training is completed the candidate set of methods is identified using the network. The proposed approach elicits the essential role of diversity in feature-based forecasting and highlights the interplay between model combination and model selection when optimizing forecasting ensembles. Experimental results on a large set of series from the M4 competition dataset show that our proposal enhances point forecast accuracy compared to state-of-the-art methods.
Human cognition operates on a "Global-first" cognitive mechanism, prioritizing information processing based on coarse-grained details. This mechanism inherently possesses an adaptive multi-granularity description capacity, resulting in computational traits such as efficiency, robustness, and interpretability. The analysis pattern reliance on the finest granularity and single-granularity makes most existing computational methods less efficient, robust, and interpretable, which is an important reason for the current lack of interpretability in neural networks. Multi-granularity granular-ball computing employs granular-balls of varying sizes to daptively represent and envelop the sample space, facilitating learning based on these granular-balls. Given that the number of coarse-grained "granular-balls" is fewer than sample points, granular-ball computing proves more efficient. Moreover, the inherent coarse-grained nature of granular-balls reduces susceptibility to fine-grained sample disturbances, enhancing robustness. The multi-granularity construct of granular-balls generates topological structures and coarse-grained descriptions, naturally augmenting interpretability. Granular-ball computing has successfully ventured into diverse AI domains, fostering the development of innovative theoretical methods, including granular-ball classifiers, clustering techniques, neural networks, rough sets, and evolutionary computing. This has notably ameliorated the efficiency, noise robustness, and interpretability of traditional methods. Overall, granular-ball computing is a rare and innovative theoretical approach in AI that can adaptively and simultaneously enhance efficiency, robustness, and interpretability. This article delves into the main application landscapes for granular-ball computing, aiming to equip future researchers with references and insights to refine and expand this promising theory.
We adopt the integral definition of the fractional Laplace operator and study an optimal control problem on Lipschitz domains that involves a fractional elliptic partial differential equation (PDE) as state equation and a control variable that enters the state equation as a coefficient; pointwise constraints on the control variable are considered as well. We establish the existence of optimal solutions and analyze first and, necessary and sufficient, second order optimality conditions. Regularity estimates for optimal variables are also analyzed. We develop two finite element discretization strategies: a semidiscrete scheme in which the control variable is not discretized, and a fully discrete scheme in which the control variable is discretized with piecewise constant functions. For both schemes, we analyze the convergence properties of discretizations and derive error estimates.
Issue resolution and bug-fixing processes are essential in the development of machine-learning libraries, similar to software development, to ensure well-optimized functions. Understanding the issue resolution and bug-fixing process of machine-learning libraries can help developers identify areas for improvement and optimize their strategies for issue resolution and bug-fixing. However, detailed studies on this topic are lacking. Therefore, we investigated the effectiveness of issue resolution for bug-fixing processes in six machine-learning libraries: Tensorflow, Keras, Theano, Pytorch, Caffe, and Scikit-learn. We addressed seven research questions (RQs) using 16,921 issues extracted from the GitHub repository via the GitHub Rest API. We employed several quantitative methods of data analysis, including correlation, OLS regression, percentage and frequency count, and heatmap to analyze the RQs. We found the following through our empirical investigation: (1) The most common categories of issues that arise in machine-learning libraries are bugs, documentation, optimization, crashes, enhancement, new feature requests, build/CI, support, and performance. (2) Effective strategies for addressing these problems include fixing critical bugs, optimizing performance, and improving documentation. (3) These categorized issues are related to testing and runtime and are common among all six machine-learning libraries. (4) Monitoring the total number of comments on issues can provide insights into the duration of the issues. (5) It is crucial to strike a balance between prioritizing critical issues and addressing other issues in a timely manner. Therefore, this study concludes that efficient issue-tracking processes, effective communication, and collaboration are vital for effective resolution of issues and bug fixing processes in machine-learning libraries.
It has been demonstrated that acoustic-emission (AE), inspection of structures can offer advantages over other types of monitoring techniques in the detection of damage; namely, an increased sensitivity to damage, as well as an ability to localise its source. There are, however, numerous challenges associated with the analysis of AE data. One issue is the high sampling frequencies required to capture AE activity. In just a few seconds, a recording can generate very high volumes of data, of which a significant portion may be of little interest for analysis. Identifying the individual AE events in a recorded time-series is therefore a necessary procedure to reduce the size of the dataset. Another challenge that is also generally encountered in practice, is determining the sources of AE, which is an important exercise if one wishes to enhance the quality of the diagnostic scheme. In this paper, a state-of-the-art technique is presented that can automatically identify AE events, and simultaneously help in their characterisation from a probabilistic perspective. A nonparametric Bayesian approach, based on the Dirichlet process (DP), is employed to overcome some of the challenges associated with these tasks. Two main sets of AE data are considered in this work: (1) from a journal bearing in operation, and (2) from an Airbus A320 main landing gear subjected to fatigue testing.
The standard theory of optimal stopping is based on the idealised assumption that the underlying process is essentially known. In this paper, we drop this restriction and study data-driven optimal stopping for a general diffusion process, focusing on investigating the statistical performance of the proposed estimator of the optimal stopping barrier. More specifically, we derive non-asymptotic upper bounds on the simple regret, along with uniform and non-asymptotic PAC bounds. Minimax optimality is verified by completing the upper bound results with matching lower bounds on the simple regret. All results are shown both under general conditions on the payoff functions and under more refined assumptions that mimic the margin condition used in binary classification, leading to an improved rate of convergence. Additionally, we investigate how our results on the simple regret transfer to the cumulative regret for a specific exploration-exploitation strategy, both with respect to lower bounds and upper bounds.
Estimating the prevalence of a medical condition, or the proportion of the population in which it occurs, is a fundamental problem in healthcare and public health. Accurate estimates of the relative prevalence across groups -- capturing, for example, that a condition affects women more frequently than men -- facilitate effective and equitable health policy which prioritizes groups who are disproportionately affected by a condition. However, it is difficult to estimate relative prevalence when a medical condition is underreported. In this work, we provide a method for accurately estimating the relative prevalence of underreported medical conditions, building upon the positive unlabeled learning framework. We show that under the commonly made covariate shift assumption -- i.e., that the probability of having a disease conditional on symptoms remains constant across groups -- we can recover the relative prevalence, even without restrictive assumptions commonly made in positive unlabeled learning and even if it is impossible to recover the absolute prevalence. We conduct experiments on synthetic and real health data which demonstrate our method's ability to recover the relative prevalence more accurately than do baselines, and demonstrate the method's robustness to plausible violations of the covariate shift assumption. We conclude by illustrating the applicability of our method to case studies of intimate partner violence and hate speech.
With the rising concern on model interpretability, the application of eXplainable AI (XAI) tools on deepfake detection models has been a topic of interest recently. In image classification tasks, XAI tools highlight pixels influencing the decision given by a model. This helps in troubleshooting the model and determining areas that may require further tuning of parameters. With a wide range of tools available in the market, choosing the right tool for a model becomes necessary as each one may highlight different sets of pixels for a given image. There is a need to evaluate different tools and decide the best performing ones among them. Generic XAI evaluation methods like insertion or removal of salient pixels/segments are applicable for general image classification tasks but may produce less meaningful results when applied on deepfake detection models due to their functionality. In this paper, we perform experiments to show that generic removal/insertion XAI evaluation methods are not suitable for deepfake detection models. We also propose and implement an XAI evaluation approach specifically suited for deepfake detection models.
Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.