亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose an efficient method for the numerical approximation of a general class of two dimensional semilinear parabolic problems on polygonal meshes. The proposed approach takes advantage of the properties of the serendipity version of the Virtual Element Method (VEM), which not only significantly reduces the number of degrees of freedom compared to the classical VEM but also, under certain conditions on the mesh, allows to approximate the nonlinear term with an interpolant in the Serendipity VEM space; which substantially improves the efficiency of the method. An error analysis for the semi-discrete formulation is carried out, and an optimal estimate for the error in the $L_2$-norm is obtained. The accuracy and efficiency of the proposed method when combined with a second order Strang operator splitting time discretization is illustrated in our numerical experiments, with approximations up to order $6$.

相關內容

In this paper, we propose a new trace finite element method for the {Laplace-Beltrami} eigenvalue problem. The method is proposed directly on a smooth manifold which is implicitly given by a level-set function and require high order numerical quadrature on the surface. A comprehensive analysis for the method is provided. We show that the eigenvalues of the discrete Laplace-Beltrami operator coincide with only part of the eigenvalues of an embedded problem, which further corresponds to the finite eigenvalues for a singular generalized algebraic eigenvalue problem. The finite eigenvalues can be efficiently solved by a rank-completing perturbation algorithm in {\it Hochstenbach et al. SIAM J. Matrix Anal. Appl., 2019} \cite{hochstenbach2019solving}. We prove the method has optimal convergence rate. Numerical experiments verify the theoretical analysis and show that the geometric consistency can improve the numerical accuracy significantly.

CT image-based diagnosis of the stomach is developed as a new way of diagnostic method. A virtual unfolded (VU) view is suitable for displaying its wall. In this paper, we propose a semi-automated method for generating VU views of the stomach. Our method requires minimum manual operations. The determination of the unfolding forces and the termination of the unfolding process are automated. The unfolded shape of the stomach is estimated based on its radius. The unfolding forces are determined so that the stomach wall is deformed to the expected shape. The iterative deformation process is terminated if the difference of the shapes between the deformed shape and expected shape is small. Our experiments using 67 CT volumes showed that our proposed method can generate good VU views for 76.1% cases.

We construct a space-time parallel method for solving parabolic partial differential equations by coupling the Parareal algorithm in time with overlapping domain decomposition in space. The goal is to obtain a discretization consisting of "local" problems that can be solved on parallel computers efficiently. However, this introduces significant sources of error that must be evaluated. Reformulating the original Parareal algorithm as a variational method and implementing a finite element discretization in space enables an adjoint-based a posteriori error analysis to be performed. Through an appropriate choice of adjoint problems and residuals the error analysis distinguishes between errors arising due to the temporal and spatial discretizations, as well as between the errors arising due to incomplete Parareal iterations and incomplete iterations of the domain decomposition solver. We first develop an error analysis for the Parareal method applied to parabolic partial differential equations, and then refine this analysis to the case where the associated spatial problems are solved using overlapping domain decomposition. These constitute our Time Parallel Algorithm (TPA) and Space-Time Parallel Algorithm (STPA) respectively. Numerical experiments demonstrate the accuracy of the estimator for both algorithms and the iterations between distinct components of the error.

High-order implicit shock tracking is a new class of numerical methods to approximate solutions of conservation laws with non-smooth features. These methods align elements of the computational mesh with non-smooth features to represent them perfectly, allowing high-order basis functions to approximate smooth regions of the solution without the need for nonlinear stabilization, which leads to accurate approximations on traditionally coarse meshes. The hallmark of these methods is the underlying optimization formulation whose solution is a feature-aligned mesh and the corresponding high-order approximation to the flow; the key challenge is robustly solving the central optimization problem. In this work, we develop a robust optimization solver for high-order implicit shock tracking methods so they can be reliably used to simulate complex, high-speed, compressible flows in multiple dimensions. The proposed method integrates practical robustness measures into a sequential quadratic programming method, including dimension- and order-independent simplex element collapses, mesh smoothing, and element-wise solution re-initialization, which prove to be necessary to reliably track complex discontinuity surfaces, such as curved and reflecting shocks, shock formation, and shock-shock interaction. A series of nine numerical experiments -- including two- and three-dimensional compressible flows with complex discontinuity surfaces -- are used to demonstrate: 1) the robustness of the solver, 2) the meshes produced are high-quality and track continuous, non-smooth features in addition to discontinuities, 3) the method achieves the optimal convergence rate of the underlying discretization even for flows containing discontinuities, and 4) the method produces highly accurate solutions on extremely coarse meshes relative to approaches based on shock capturing.

Robust discrete optimization is a highly active field of research where a plenitude of combinations between decision criteria, uncertainty sets and underlying nominal problems are considered. Usually, a robust problem becomes harder to solve than its nominal counterpart, even if it remains in the same complexity class. For this reason, specialized solution algorithms have been developed. To further drive the development of stronger solution algorithms and to facilitate the comparison between methods, a set of benchmark instances is necessary but so far missing. In this paper we propose a further step towards this goal by proposing several instance generation procedures for combinations of min-max, min-max regret, two-stage and recoverable robustness with interval, discrete or budgeted uncertainty sets. Besides sampling methods that go beyond the simple uniform sampling method that is the de-facto standard to produce instances, also optimization models to construct hard instances are considered. Using a selection problem for the nominal ground problem, we are able to generate instances that are several orders of magnitudes harder to solve than uniformly sampled instances when solving them with a general mixed-integer programming solver. All instances and generator codes are made available online.

We consider the inverse problem of reconstructing the boundary curve of a cavity embedded in a bounded domain. The problem is formulated in two dimensions for the wave equation. We combine the Laguerre transform with the integral equation method and we reduce the inverse problem to a system of boundary integral equations. We propose an iterative scheme that linearizes the equation using the Fr\'echet derivative of the forward operator. The application of special quadrature rules results to an ill-conditioned linear system which we solve using Tikhonov regularization. The numerical results show that the proposed method produces accurate and stable reconstructions.

We develop two adaptive discretization algorithms for convex semi-infinite optimization, which terminate after finitely many iterations at approximate solutions of arbitrary precision. In particular, they terminate at a feasible point of the considered optimization problem. Compared to the existing finitely feasible algorithms for general semi-infinite optimization problems, our algorithms work with considerably smaller discretizations and are thus computationally favorable. Also, our algorithms terminate at approximate solutions of arbitrary precision, while for general semi-infinite optimization problems the best possible approximate-solution precision can be arbitrarily bad. All occurring finite optimization subproblems in our algorithms have to be solved only approximately, and continuity is the only regularity assumption on our objective and constraint functions. Applications to parametric and non-parametric regression problems under shape constraints are discussed.

We introduce a new numerical method for solving time-harmonic acoustic scattering problems. The main focus is on plane waves scattered by smoothly varying material inhomogeneities. The proposed method works for any frequency $\omega$, but is especially efficient for high-frequency problems. It is based on a time-domain approach and consists of three steps: \emph{i)} computation of a suitable incoming plane wavelet with compact support in the propagation direction; \emph{ii)} solving a scattering problem in the time domain for the incoming plane wavelet; \emph{iii)} reconstruction of the time-harmonic solution from the time-domain solution via a Fourier transform in time. An essential ingredient of the new method is a front-tracking mesh adaptation algorithm for solving the problem in \emph{ii)}. By exploiting the limited support of the wave front, this allows us to make the number of the required degrees of freedom to reach a given accuracy significantly less dependent on the frequency $\omega$. We also present a new algorithm for computing the Fourier transform in \emph{iii)} that exploits the reduced number of degrees of freedom corresponding to the adapted meshes. Numerical examples demonstrate the advantages of the proposed method and the fact that the method can also be applied with external source terms such as point sources and sound-soft scatterers. The gained efficiency, however, is limited in the presence of trapping modes.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

We present an end-to-end framework for solving the Vehicle Routing Problem (VRP) using reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy gradient algorithm to optimize its parameters, the trained model produces the solution as a sequence of consecutive actions in real time, without the need to re-train for every new problem instance. On capacitated VRP, our approach outperforms classical heuristics and Google's OR-Tools on medium-sized instances in solution quality with comparable computation time (after training). We demonstrate how our approach can handle problems with split delivery and explore the effect of such deliveries on the solution quality. Our proposed framework can be applied to other variants of the VRP such as the stochastic VRP, and has the potential to be applied more generally to combinatorial optimization problems.

北京阿比特科技有限公司