This work presents two numerical schemes for the variable-exponent fractional diffusion-wave equation, which describes, e.g. the propagation of mechanical diffusive waves in viscoelastic media with varying material properties. The main difficulty we overcome lies in that the variable-exponent Abel kernel may not be positive definite or monotonic, and the stability and error estimate of both schemes are proved, with $\alpha(0)$-order and second-order accuracy in time, respectively. Numerical experiments are presented to substantiate the theoretical findings.
We provide a polynomial-time classical algorithm for noisy quantum circuits. The algorithm computes the expectation value of any observable for any circuit, with a small average error over input states drawn from an ensemble (e.g. the computational basis). Our approach is based upon the intuition that noise exponentially damps non-local correlations relative to local correlations. This enables one to classically simulate a noisy quantum circuit by only keeping track of the dynamics of local quantum information. Our algorithm also enables sampling from the output distribution of a circuit in quasi-polynomial time, so long as the distribution anti-concentrates. A number of practical implications are discussed, including a fundamental limit on the efficacy of noise mitigation strategies: any quantum circuit for which error mitigation is efficient must be classically simulable.
The Discrete Ordinates Method (DOM) is the most widely used velocity discretization method for simulating the radiative transport equation. The ray effect stands as a long-standing drawback of DOM. In benchmark tests displaying the ray effect, we observe low regularity in velocity within the solution. To address this issue, we propose a random ordinate method (ROM) to mitigate the ray effect. Compared with other strategies proposed in the literature for mitigating the ray effect, ROM offers several advantages: 1) the computational cost is comparable to DOM; 2) it is simple and requires minimal changes to existing code based on DOM; 3) it is easily parallelizable and independent of the problem setup. Analytical results are presented for the convergence orders of the error and bias, and numerical tests demonstrate its effectiveness in mitigating the ray effect.
Predicting quantum operator matrices such as Hamiltonian, overlap, and density matrices in the density functional theory (DFT) framework is crucial for understanding material properties. Current methods often focus on individual operators and struggle with efficiency and scalability for large systems. Here we introduce a novel deep learning model, SLEM (strictly localized equivariant message-passing) for predicting multiple quantum operators, that achieves state-of-the-art accuracy while dramatically improving computational efficiency. SLEM's key innovation is its strict locality-based design, constructing local, equivariant representations for quantum tensors while preserving physical symmetries. This enables complex many-body dependence without expanding the effective receptive field, leading to superior data efficiency and transferability. Using an innovative SO(2) convolution technique, SLEM reduces the computational complexity of high-order tensor products and is therefore capable of handling systems requiring the $f$ and $g$ orbitals in their basis sets. We demonstrate SLEM's capabilities across diverse 2D and 3D materials, achieving high accuracy even with limited training data. SLEM's design facilitates efficient parallelization, potentially extending DFT simulations to systems with device-level sizes, opening new possibilities for large-scale quantum simulations and high-throughput materials discovery.
We present a novel and mathematically transparent approach to function approximation and the training of large, high-dimensional neural networks, based on the approximate least-squares solution of associated Fredholm integral equations of the first kind by Ritz-Galerkin discretization, Tikhonov regularization and tensor-train methods. Practical application to supervised learning problems of regression and classification type confirm that the resulting algorithms are competitive with state-of-the-art neural network-based methods.
In this paper, we investigate the strong convergence analysis of parareal algorithms for stochastic Maxwell equations with the damping term driven by additive noise. The proposed parareal algorithms proceed as two-level temporal parallelizable integrators with the stochastic exponential integrator as the coarse propagator and both the exact solution integrator and the stochastic exponential integrator as the fine propagator. It is proved that the convergence order of the proposed algorithms linearly depends on the iteration number. Numerical experiments are performed to illustrate the convergence order of the algorithms for different choices of the iteration number, the damping coefficient and the scale of noise.
A global approximation method of Nystr\"om type is explored for the numerical solution of a class of nonlinear integral equations of the second kind. The cases of smooth and weakly singular kernels are both considered. In the first occurrence, the method uses a Gauss-Legendre rule whereas in the second one resorts to a product rule based on Legendre nodes. Stability and convergence are proved in functional spaces equipped with the uniform norm and several numerical tests are given to show the good performance of the proposed method. An application to the interior Neumann problem for the Laplace equation with nonlinear boundary conditions is also considered.
To solve many problems on graphs, graph traversals are used, the usual variants of which are the depth-first search and the breadth-first search. Implementing a graph traversal we consequently reach all vertices of the graph that belong to a connected component. The breadth-first search is the usual choice when constructing efficient algorithms for finding connected components of a graph. Methods of simple iteration for solving systems of linear equations with modified graph adjacency matrices and with the properly specified right-hand side can be considered as graph traversal algorithms. These traversal algorithms, generally speaking, turn out to be non-equivalent neither to the depth-first search nor the breadth-first search. The example of such a traversal algorithm is the one associated with the Gauss-Seidel method. For an arbitrary connected graph, to visit all its vertices, the algorithm requires not more iterations than that is required for BFS. For a large number of instances of the problem, fewer iterations will be required.
Neural ordinary differential equations (Neural ODEs) is a class of machine learning models that approximate the time derivative of hidden states using a neural network. They are powerful tools for modeling continuous-time dynamical systems, enabling the analysis and prediction of complex temporal behaviors. However, how to improve the model's stability and physical interpretability remains a challenge. This paper introduces new conservation relations in Neural ODEs using Lie symmetries in both the hidden state dynamics and the back propagation dynamics. These conservation laws are then incorporated into the loss function as additional regularization terms, potentially enhancing the physical interpretability and generalizability of the model. To illustrate this method, the paper derives Lie symmetries and conservation laws in a simple Neural ODE designed to monitor charged particles in a sinusoidal electric field. New loss functions are constructed from these conservation relations, demonstrating the applicability symmetry-regularized Neural ODE in typical modeling tasks, such as data-driven discovery of dynamical systems.
This work explores the representation of univariate and multivariate functions as matrix product states (MPS), also known as quantized tensor-trains (QTT). It proposes an algorithm that employs iterative Chebyshev expansions and Clenshaw evaluations to represent analytic and highly differentiable functions as MPS Chebyshev interpolants. It demonstrates rapid convergence for highly-differentiable functions, aligning with theoretical predictions, and generalizes efficiently to multidimensional scenarios. The performance of the algorithm is compared with that of tensor cross-interpolation (TCI) and multiscale interpolative constructions through a comprehensive comparative study. When function evaluation is inexpensive or when the function is not analytical, TCI is generally more efficient for function loading. However, the proposed method shows competitive performance, outperforming TCI in certain multivariate scenarios. Moreover, it shows advantageous scaling rates and generalizes to a wider range of tasks by providing a framework for function composition in MPS, which is useful for non-linear problems and many-body statistical physics.
In high-temperature plasma physics, a strong magnetic field is usually used to confine charged particles. Therefore, for studying the classical mathematical models of the physical problems it needs to consider the effect of external magnetic fields. One of the important model equations in plasma is the Vlasov-Poisson equation with an external magnetic field. This equation usually has multi-scale characteristics and rich physical properties, thus it is very important and meaningful to construct numerical methods that can maintain the physical properties inherited by the original systems over long time. This paper extends the corresponding theory in Cartesian coordinates to general orthogonal curvilinear coordinates, and proves that a Poisson-bracket structure can still be obtained after applying the corresponding finite element discretization. However, the Hamiltonian systems in the new coordinate systems generally cannot be decomposed into sub-systems that can be solved accurately, so it is impossible to use the splitting methods to construct the corresponding geometric integrators. Therefore, this paper proposes a semi-implicit method for strong magnetic fields and analyzes the asymptotic stability of this method.