亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent work using pretrained transformers has shown impressive performance when fine-tuned with data from the downstream problem of interest. However, they struggle to retain that performance when the data characteristics changes. In this paper, we focus on continual learning, where a pre-trained transformer is updated to perform well on new data, while retaining its performance on data it was previously trained on. Earlier works have tackled this primarily through methods inspired from prompt tuning. We question this choice, and investigate the applicability of Low Rank Adaptation (LoRA) to continual learning. On a range of domain-incremental learning benchmarks, our LoRA-based solution, CoLoR, yields state-of-the-art performance, while still being as parameter efficient as the prompt tuning based methods.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

This paper considers the optimal sensor allocation for estimating the emission rates of multiple sources in a two-dimensional spatial domain. Locations of potential emission sources are known (e.g., factory stacks), and the number of sources is much greater than the number of sensors that can be deployed, giving rise to the optimal sensor allocation problem. In particular, we consider linear dispersion forward models, and the optimal sensor allocation is formulated as a bilevel optimization problem. The outer problem determines the optimal sensor locations by minimizing the overall Mean Squared Error of the estimated emission rates over various wind conditions, while the inner problem solves an inverse problem that estimates the emission rates. Two algorithms, including the repeated Sample Average Approximation and the Stochastic Gradient Descent based bilevel approximation, are investigated in solving the sensor allocation problem. Convergence analysis is performed to obtain the performance guarantee, and numerical examples are presented to illustrate the proposed approach.

Diffusion models trained with mean squared error loss tend to generate unrealistic samples. Current state-of-the-art models rely on classifier-free guidance to improve sample quality, yet its surprising effectiveness is not fully understood. In this paper, we show that the effectiveness of classifier-free guidance partly originates from it being a form of implicit perceptual guidance. As a result, we can directly incorporate perceptual loss in diffusion training to improve sample quality. Since the score matching objective used in diffusion training strongly resembles the denoising autoencoder objective used in unsupervised training of perceptual networks, the diffusion model itself is a perceptual network and can be used to generate meaningful perceptual loss. We propose a novel self-perceptual objective that results in diffusion models capable of generating more realistic samples. For conditional generation, our method only improves sample quality without entanglement with the conditional input and therefore does not sacrifice sample diversity. Our method can also improve sample quality for unconditional generation, which was not possible with classifier-free guidance before.

This paper studies linear time series regressions with many regressors. Weak exogeneity is the most used identifying assumption in time series. Weak exogeneity requires the structural error to have zero conditional expectation given the present and past regressor values, allowing errors to correlate with future regressor realizations. We show that weak exogeneity in time series regressions with many controls may produce substantial biases and even render the least squares (OLS) estimator inconsistent. The bias arises in settings with many regressors because the normalized OLS design matrix remains asymptotically random and correlates with the regression error when only weak (but not strict) exogeneity holds. This bias's magnitude increases with the number of regressors and their average autocorrelation. To address this issue, we propose an innovative approach to bias correction that yields a new estimator with improved properties relative to OLS. We establish consistency and conditional asymptotic Gaussianity of this new estimator and provide a method for inference.

The relay channel with unreliable helper is introduced and studied. The model is that of a classical relay channel where the input from the relay to the channel has an extra primitive link whose presence is not assured a priori. The extra link represents a helper who may decide not to cooperate in transmission. The goal is to devise robust coding schemes that exploit all the relay links when they are present, but can also operate, possibly at reduced rates, when the extra primitive link (helper) is absent. The capacity region of this class of problems is defined, and fully characterized for degraded relay channels. The degraded Gaussian relay channel with unreliable relay link is solved.

One-shot channel simulation is a fundamental data compression problem concerned with encoding a single sample from a target distribution $Q$ using a coding distribution $P$ using as few bits as possible on average. Algorithms that solve this problem find applications in neural data compression and differential privacy and can serve as a more efficient alternative to quantization-based methods. Sadly, existing solutions are too slow or have limited applicability, preventing widespread adoption. In this paper, we conclusively solve one-shot channel simulation for one-dimensional problems where the target-proposal density ratio is unimodal by describing an algorithm with optimal runtime. We achieve this by constructing a rejection sampling procedure equivalent to greedily searching over the points of a Poisson process. Hence, we call our algorithm greedy Poisson rejection sampling (GPRS) and analyze the correctness and time complexity of several of its variants. Finally, we empirically verify our theorems, demonstrating that GPRS significantly outperforms the current state-of-the-art method, A* coding. Our code is available at //github.com/gergely-flamich/greedy-poisson-rejection-sampling.

Data stream forecasts are essential inputs for decision making at digital platforms. Machine learning algorithms are appealing candidates to produce such forecasts. Yet, digital platforms require a large-scale forecast framework that can flexibly respond to sudden performance drops. Re-training ML algorithms at the same speed as new data batches enter is usually computationally too costly. On the other hand, infrequent re-training requires specifying the re-training frequency and typically comes with a severe cost of forecast deterioration. To ensure accurate and stable forecasts, we propose a simple data-driven monitoring procedure to answer the question when the ML algorithm should be re-trained. Instead of investigating instability of the data streams, we test if the incoming streaming forecast loss batch differs from a well-defined reference batch. Using a novel dataset constituting 15-min frequency data streams from an on-demand logistics platform operating in London, we apply the monitoring procedure to popular ML algorithms including random forest, XGBoost and lasso. We show that monitor-based re-training produces accurate forecasts compared to viable benchmarks while preserving computational feasibility. Moreover, the choice of monitoring procedure is more important than the choice of ML algorithm, thereby permitting practitioners to combine the proposed monitoring procedure with one's favorite forecasting algorithm.

The end-to-end ASR model is often desired in the streaming multilingual scenario since it is easier to deploy and can benefit from pre-trained speech models such as powerful foundation models. Meanwhile, the heterogeneous nature and imbalanced data abundance of different languages may cause performance degradation, leading to asynchronous peak performance for different languages during training, especially on tail ones. Sometimes even the data itself may become unavailable as a result of the enhanced privacy protection. Existing work tend to significantly increase the model size or learn language-specific decoders to accommodate each language separately. In this study, we explore simple yet effective Language-Dependent Adapter (LDA) finetuning under a cascaded Conformer transducer framework enhanced by teacher pseudo-labeling for tail languages in the streaming multilingual ASR. The adapter only accounts for 0.4% of the full model per language. It is plugged into the frozen foundation model and is the only trainable module during the finetuning process with noisy student training. The final model merges the adapter parameters from different checkpoints for different languages. The model performance is validated on a challenging multilingual dictation dataset, which includes 39 tail languages across Latin, Greek, Arabic, etc. Our proposed method brings 12.2% word error rate reduction on average and up to 37.5% on a single locale. Furthermore, we show that our parameter-efficient LDA can match the quality of the full model finetuning, thus greatly alleviating the asynchronous peak performance issue.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司