亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To achieve reliable and precise scene understanding, autonomous vehicles typically incorporate multiple sensing modalities to capitalize on their complementary attributes. However, existing cross-modal 3D detectors do not fully utilize the image domain information to address the bottleneck issues of the LiDAR-based detectors. This paper presents a new cross-modal 3D object detector, namely UPIDet, which aims to unleash the potential of the image branch from two aspects. First, UPIDet introduces a new 2D auxiliary task called normalized local coordinate map estimation. This approach enables the learning of local spatial-aware features from the image modality to supplement sparse point clouds. Second, we discover that the representational capability of the point cloud backbone can be enhanced through the gradients backpropagated from the training objectives of the image branch, utilizing a succinct and effective point-to-pixel module. Extensive experiments and ablation studies validate the effectiveness of our method. Notably, we achieved the top rank in the highly competitive cyclist class of the KITTI benchmark at the time of submission. The source code is available at //github.com/Eaphan/UPIDet.

相關內容

Domain experts often possess valuable physical insights that are overlooked in fully automated decision-making processes such as Bayesian optimisation. In this article we apply high-throughput (batch) Bayesian optimisation alongside anthropological decision theory to enable domain experts to influence the selection of optimal experiments. Our methodology exploits the hypothesis that humans are better at making discrete choices than continuous ones and enables experts to influence critical early decisions. At each iteration we solve an augmented multi-objective optimisation problem across a number of alternate solutions, maximising both the sum of their utility function values and the determinant of their covariance matrix, equivalent to their total variability. By taking the solution at the knee point of the Pareto front, we return a set of alternate solutions at each iteration that have both high utility values and are reasonably distinct, from which the expert selects one for evaluation. We demonstrate that even in the case of an uninformed practitioner, our algorithm recovers the regret of standard Bayesian optimisation.

Motion prediction has been an essential component of autonomous driving systems since it handles highly uncertain and complex scenarios involving moving agents of different types. In this paper, we propose a Multi-Granular TRansformer (MGTR) framework, an encoder-decoder network that exploits context features in different granularities for different kinds of traffic agents. To further enhance MGTR's capabilities, we leverage LiDAR point cloud data by incorporating LiDAR semantic features from an off-the-shelf LiDAR feature extractor. We evaluate MGTR on Waymo Open Dataset motion prediction benchmark and show that the proposed method achieved state-of-the-art performance, ranking 1st on its leaderboard (//waymo.com/open/challenges/2023/motion-prediction/).

Extraterrestrial autonomous lander missions increasingly demand adaptive capabilities to handle the unpredictable and diverse nature of the terrain. This paper discusses the deployment of a Deep Meta-Learning with Controlled Deployment Gaps (CoDeGa) trained model for terrain scooping tasks in Ocean Worlds Lander Autonomy Testbed (OWLAT) at NASA Jet Propulsion Laboratory. The CoDeGa-powered scooping strategy is designed to adapt to novel terrains, selecting scooping actions based on the available RGB-D image data and limited experience. The paper presents our experiences with transferring the scooping framework with CoDeGa-trained model from a low-fidelity testbed to the high-fidelity OWLAT testbed. Additionally, it validates the method's performance in novel, realistic environments, and shares the lessons learned from deploying learning-based autonomy algorithms for space exploration. Experimental results from OWLAT substantiate the efficacy of CoDeGa in rapidly adapting to unfamiliar terrains and effectively making autonomous decisions under considerable domain shifts, thereby endorsing its potential utility in future extraterrestrial missions.

In challenging terrains, constructing structures such as antennas and cable-car masts often requires the use of helicopters to transport loads via ropes. The swinging of the load, exacerbated by wind, impairs positioning accuracy, therefore necessitating precise manual placement by ground crews. This increases costs and risk of injuries. Challenging this paradigm, we present Geranos: a specialized multirotor Unmanned Aerial Vehicle (UAV) designed to enhance aerial transportation and assembly. Geranos demonstrates exceptional prowess in accurately positioning vertical poles, achieving this through an innovative integration of load transport and precision. Its unique ring design mitigates the impact of high pole inertia, while a lightweight two-part grasping mechanism ensures secure load attachment without active force. With four primary propellers countering gravity and four auxiliary ones enhancing lateral precision, Geranos achieves comprehensive position and attitude control around hovering. Our experimental demonstration mimicking antenna/cable-car mast installations showcases Geranos ability in stacking poles (3 kg, 2 m long) with remarkable sub-5 cm placement accuracy, without the need of human manual intervention.

Machine unlearning has emerged as a prominent and challenging area of interest, driven in large part by the rising regulatory demands for industries to delete user data upon request and the heightened awareness of privacy. Existing approaches either retrain models from scratch or use several finetuning steps for every deletion request, often constrained by computational resource limitations and restricted access to the original training data. In this work, we introduce a novel class unlearning algorithm designed to strategically eliminate an entire class or a group of classes from the learned model. To that end, our algorithm first estimates the Retain Space and the Forget Space, representing the feature or activation spaces for samples from classes to be retained and unlearned, respectively. To obtain these spaces, we propose a novel singular value decomposition-based technique that requires layer wise collection of network activations from a few forward passes through the network. We then compute the shared information between these spaces and remove it from the forget space to isolate class-discriminatory feature space for unlearning. Finally, we project the model weights in the orthogonal direction of the class-discriminatory space to obtain the unlearned model. We demonstrate our algorithm's efficacy on ImageNet using a Vision Transformer with only $\sim$1.5% drop in retain accuracy compared to the original model while maintaining under 1% accuracy on the unlearned class samples. Further, our algorithm consistently performs well when subject to Membership Inference Attacks showing 7.8% improvement on average across a variety of image classification datasets and network architectures, as compared to other baselines while being $\sim$6x more computationally efficient.

Internet of Things (IoT) applications are composed of massive quantities of resource-limited devices that collect sensitive data with long-term operational and security requirements. With the threat of emerging quantum computers, Post-Quantum Cryptography (PQC) is a critical requirement for IoTs. In particular, digital signatures offer scalable authentication with non-repudiation and are an essential tool for IoTs. However, as seen in NIST PQC standardization, post-quantum signatures are extremely costly for resource-limited IoTs. Hence, there is a significant need for quantum-safe signatures that respect the processing, memory, and bandwidth limitations of IoTs. In this paper, we created a new lightweight quantum-safe digital signature referred to as INFinity-HORS (INF-HORS), which is (to the best of our knowledge) the first signer-optimal hash-based signature with (polynomially) unbounded signing capability. INF-HORS enables a verifier to non-interactively construct one-time public keys from a master public key via encrypted function evaluations. This strategy avoids the performance bottleneck of hash-based standards (e.g., SPHINCS+) by eliminating hyper-tree structures. It also does not require a trusted party or non-colliding servers to distribute public keys. Our performance analysis confirms that INF-HORS is magnitudes of times more signer computation efficient than selected NIST PQC schemes (e.g., SPHINCS+, Dilithium, Falcon) with a small memory footprint.

Many important tasks of large-scale recommender systems can be naturally cast as testing multiple linear forms for noisy matrix completion. These problems, however, present unique challenges because of the subtle bias-and-variance tradeoff of and an intricate dependence among the estimated entries induced by the low-rank structure. In this paper, we develop a general approach to overcome these difficulties by introducing new statistics for individual tests with sharp asymptotics both marginally and jointly, and utilizing them to control the false discovery rate (FDR) via a data splitting and symmetric aggregation scheme. We show that valid FDR control can be achieved with guaranteed power under nearly optimal sample size requirements using the proposed methodology. Extensive numerical simulations and real data examples are also presented to further illustrate its practical merits.

We establish the existence theory of several commonly used finite element (FE) nonlinear fully discrete solutions, and the convergence theory of a linearized iteration. First, it is shown for standard FE, SUPG and edge-averaged method respectively that the stiffness matrix is a column M-matrix under certain conditions, and then the existence theory of these three FE nonlinear fully discrete solutions is presented by using Brouwer's fixed point theorem. Second, the contraction of a commonly used linearized iterative method-Gummel iteration is proven, and then the convergence theory is established for the iteration. At last, a numerical experiment is shown to verifies the theories.

Signalized intersections in arterial roads result in persistent vehicle idling and excess accelerations, contributing to fuel consumption and CO2 emissions. There has thus been a line of work studying eco-driving control strategies to reduce fuel consumption and emission levels at intersections. However, methods to devise effective control strategies across a variety of traffic settings remain elusive. In this paper, we propose a reinforcement learning (RL) approach to learn effective eco-driving control strategies. We analyze the potential impact of a learned strategy on fuel consumption, CO2 emission, and travel time and compare with naturalistic driving and model-based baselines. We further demonstrate the generalizability of the learned policies under mixed traffic scenarios. Simulation results indicate that scenarios with 100% penetration of connected autonomous vehicles (CAV) may yield as high as 18% reduction in fuel consumption and 25% reduction in CO2 emission levels while even improving travel speed by 20%. Furthermore, results indicate that even 25% CAV penetration can bring at least 50% of the total fuel and emission reduction benefits.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司