亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The positive/negative definite matrices are strong in the multi-agent protocol in dictating the agents' final states as opposed to the semidefinite matrices. Previous sufficient conditions on the bipartite consensus of the matrix-weighted network are heavily based on the positive-negative spanning tree whereby the strong connections permeate the network. To establish sufficient conditions for the weakly connected matrix-weighted network where such a spanning tree does not exist, we first identify a basic unit in the graph that is naturally bipartite in structure and in convergence, referred to as a continent. We then derive sufficient conditions for when several of these units are connected through paths or edges that are endowed with semidefinite matricial weights. Lastly, we discuss how consensus and bipartite consensus, unsigned and signed matrix-weighted networks should be unified, thus generalizing the obtained results to the consensus study of the matrix-weighted networks.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Population aging is one of the most serious problems in certain countries. In order to implement its countermeasures, understanding its rapid progress is of urgency with a granular resolution. However, a detailed and rigorous survey with high frequency is not feasible due to the constraints of financial and human resources. Nowadays, Deep Learning is prevalent for pattern recognition with significant accuracy, with its application to remote sensing. This paper proposes a multi-head Convolutional Neural Network model with transfer learning from pre-trained ResNet50 for estimating mesh-wise demographics of Japan as one of the most aged countries in the world, with satellite images from Landsat-8/OLI and Suomi NPP/VIIRS-DNS as inputs and census demographics as labels. The trained model was performed on a testing dataset with a test score of at least 0.8914 in $\text{R}^2$ for all the demographic composition groups, and the estimated demographic composition was generated and visualised for 2022 as a non-census year.

Requirements elicitation interviews are a widely adopted technique, where the interview success heavily depends on the interviewer's preparedness and communication skills. Students can enhance these skills through practice interviews. However, organizing practice interviews for many students presents scalability challenges, given the time and effort required to involve stakeholders in each session. To address this, we propose REIT, an extensible architecture for Requirements Elicitation Interview Training system based on emerging educational technologies. REIT consists of two phases: the interview phase, wherein students act as interviewers while the system assumes the role of an interviewee, and the feedback phase, during which the system assesses students' performance and offers contextual and behavioral feedback to enhance their interviewing skills. We demonstrate the applicability of REIT through two implementations: RoREIT with a physical robotic agent and VoREIT with a virtual voice-only agent. We empirically evaluated both instances with a group of graduate students. The participants appreciated both systems. They demonstrated higher learning gain when trained with RoREIT, but they found VoREIT more engaging and easier to use. These findings indicate that each system has its distinct benefits and drawbacks, suggesting that \gensys{} can be configured for various educational settings based on preferences and available resources.

Assessing the robustness of deep neural networks against out-of-distribution inputs is crucial, especially in safety-critical domains like autonomous driving, but also in safety systems where malicious actors can digitally alter inputs to circumvent safety guards. However, designing effective out-of-distribution tests that encompass all possible scenarios while preserving accurate label information is a challenging task. Existing methodologies often entail a compromise between variety and constraint levels for attacks and sometimes even both. In a first step towards a more holistic robustness evaluation of image classification models, we introduce an attack method based on image solarization that is conceptually straightforward yet avoids jeopardizing the global structure of natural images independent of the intensity. Through comprehensive evaluations of multiple ImageNet models, we demonstrate the attack's capacity to degrade accuracy significantly, provided it is not integrated into the training augmentations. Interestingly, even then, no full immunity to accuracy deterioration is achieved. In other settings, the attack can often be simplified into a black-box attack with model-independent parameters. Defenses against other corruptions do not consistently extend to be effective against our specific attack. Project website: //github.com/paulgavrikov/adversarial_solarization

Emotion recognition in conversations (ERC) is a crucial task for building human-like conversational agents. While substantial efforts have been devoted to ERC for chit-chat dialogues, the task-oriented counterpart is largely left unattended. Directly applying chit-chat ERC models to task-oriented dialogues (ToDs) results in suboptimal performance as these models overlook key features such as the correlation between emotions and task completion in ToDs. In this paper, we propose a framework that turns a chit-chat ERC model into a task-oriented one, addressing three critical aspects: data, features and objective. First, we devise two ways of augmenting rare emotions to improve ERC performance. Second, we use dialogue states as auxiliary features to incorporate key information from the goal of the user. Lastly, we leverage a multi-aspect emotion definition in ToDs to devise a multi-task learning objective and a novel emotion-distance weighted loss function. Our framework yields significant improvements for a range of chit-chat ERC models on EmoWOZ, a large-scale dataset for user emotion in ToDs. We further investigate the generalisability of the best resulting model to predict user satisfaction in different ToD datasets. A comparison with supervised baselines shows a strong zero-shot capability, highlighting the potential usage of our framework in wider scenarios.

As increasingly sophisticated language models emerge, their trustworthiness becomes a pivotal issue, especially in tasks such as summarization and question-answering. Ensuring their responses are contextually grounded and faithful is challenging due to the linguistic diversity and the myriad of possible answers. In this paper, we introduce a novel approach to evaluate faithfulness of machine-generated text by computing the longest noncontinuous substring of the claim that is supported by the context, which we refer to as the Longest Supported Subsequence (LSS). Using a new human-annotated dataset, we finetune a model to generate LSS. We introduce a new method of evaluation and demonstrate that these metrics correlate better with human ratings when LSS is employed, as opposed to when it is not. Our proposed metric demonstrates an 18% enhancement over the prevailing state-of-the-art metric for faithfulness on our dataset. Our metric consistently outperforms other metrics on a summarization dataset across six different models. Finally, we compare several popular Large Language Models (LLMs) for faithfulness using this metric. We release the human-annotated dataset built for predicting LSS and our fine-tuned model for evaluating faithfulness.

Bayesian classifiers perform well when each of the features is completely independent of the other which is not always valid in real world application. The aim of this study is to implement and compare the performances of each variant of Bayesian classifier (Multinomial, Bernoulli, and Gaussian) on anomaly detection in network intrusion, and to investigate whether there is any association between each variant assumption and their performance. Our investigation showed that each variant of Bayesian algorithm blindly follows its assumption regardless of feature property, and that the assumption is the single most important factor that influences their accuracy. Experimental results show that Bernoulli has accuracy of 69.9% test (71% train), Multinomial has accuracy of 31.2% test (31.2% train), while Gaussian has accuracy of 81.69% test (82.84% train). Going deeper, we investigated and found that each Naive Bayes variants performances and accuracy is largely due to each classifier assumption, Gaussian classifier performed best on anomaly detection due to its assumption that features follow normal distributions which are continuous, while multinomial classifier have a dismal performance as it simply assumes discreet and multinomial distribution.

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司