亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Boundary discontinuity and its inconsistency to the final detection metric have been the bottleneck for rotating detection regression loss design. In this paper, we propose a novel regression loss based on Gaussian Wasserstein distance as a fundamental approach to solve the problem. Specifically, the rotated bounding box is converted to a 2-D Gaussian distribution, which enables to approximate the indifferentiable rotational IoU induced loss by the Gaussian Wasserstein distance (GWD) which can be learned efficiently by gradient back-propagation. GWD can still be informative for learning even there is no overlapping between two rotating bounding boxes which is often the case for small object detection. Thanks to its three unique properties, GWD can also elegantly solve the boundary discontinuity and square-like problem regardless how the bounding box is defined. Experiments on five datasets using different detectors show the effectiveness of our approach. Codes are available at //github.com/yangxue0827/RotationDetection and //github.com/open-mmlab/mmrotate.

相關內容

Rotated object detection in aerial images is still challenging due to arbitrary orientations, large scale and aspect ratio variations, and extreme density of objects. Existing state-of-the-art rotated object detection methods mainly rely on angle-based detectors. However, angle regression can easily suffer from the long-standing boundary problem. To tackle this problem, we propose a purely angle-free framework for rotated object detection, called Point RCNN, which mainly consists of PointRPN and PointReg. In particular, PointRPN generates accurate rotated RoIs (RRoIs) by converting the learned representative points with a coarse-to-fine manner, which is motivated by RepPoints. Based on the learned RRoIs, PointReg performs corner points refinement for more accurate detection. In addition, aerial images are often severely unbalanced in categories, and existing methods almost ignore this issue. In this paper, we also experimentally verify that re-sampling the images of the rare categories will stabilize training and further improve the detection performance. Experiments demonstrate that our Point RCNN achieves the new state-of-the-art detection performance on commonly used aerial datasets, including DOTA-v1.0, DOTA-v1.5, and HRSC2016.

Considering two random variables with different laws to which we only have access through finite size iid samples, we address how to reweight the first sample so that its empirical distribution converges towards the true law of the second sample as the size of both samples goes to infinity. We study an optimal reweighting that minimizes the Wasserstein distance between the empirical measures of the two samples, and leads to an expression of the weights in terms of Nearest Neighbors. The consistency and some asymptotic convergence rates in terms of expected Wasserstein distance are derived, and do not need the assumption of absolute continuity of one random variable with respect to the other. These results have some application in Uncertainty Quantification for decoupled estimation and in the bound of the generalization error for the Nearest Neighbor Regression under covariate shift.

Unbiased SGG has achieved significant progress over recent years. However, almost all existing SGG models have overlooked the ground-truth annotation qualities of prevailing SGG datasets, i.e., they always assume: 1) all the manually annotated positive samples are equally correct; 2) all the un-annotated negative samples are absolutely background. In this paper, we argue that both assumptions are inapplicable to SGG: there are numerous "noisy" groundtruth predicate labels that break these two assumptions, and these noisy samples actually harm the training of unbiased SGG models. To this end, we propose a novel model-agnostic NoIsy label CorrEction strategy for SGG: NICE. NICE can not only detect noisy samples but also reassign more high-quality predicate labels to them. After the NICE training, we can obtain a cleaner version of SGG dataset for model training. Specifically, NICE consists of three components: negative Noisy Sample Detection (Neg-NSD), positive NSD (Pos-NSD), and Noisy Sample Correction (NSC). Firstly, in Neg-NSD, we formulate this task as an out-of-distribution detection problem, and assign pseudo labels to all detected noisy negative samples. Then, in Pos-NSD, we use a clustering-based algorithm to divide all positive samples into multiple sets, and treat the samples in the noisiest set as noisy positive samples. Lastly, in NSC, we use a simple but effective weighted KNN to reassign new predicate labels to noisy positive samples. Extensive results on different backbones and tasks have attested to the effectiveness and generalization abilities of each component of NICE.

Due to the importance of the lower bounding distances and the attractiveness of symbolic representations, the family of symbolic aggregate approximations (SAX) has been used extensively for encoding time series data. However, typical SAX-based methods rely on two restrictive assumptions; the Gaussian distribution and equiprobable symbols. This paper proposes two novel data-driven SAX-based symbolic representations, distinguished by their discretization steps. The first representation, oriented for general data compaction and indexing scenarios, is based on the combination of kernel density estimation and Lloyd-Max quantization to minimize the information loss and mean squared error in the discretization step. The second method, oriented for high-level mining tasks, employs the Mean-Shift clustering method and is shown to enhance anomaly detection in the lower-dimensional space. Besides, we verify on a theoretical basis a previously observed phenomenon of the intrinsic process that results in a lower than the expected variance of the intermediate piecewise aggregate approximation. This phenomenon causes an additional information loss but can be avoided with a simple modification. The proposed representations possess all the attractive properties of the conventional SAX method. Furthermore, experimental evaluation on real-world datasets demonstrates their superiority compared to the traditional SAX and an alternative data-driven SAX variant.

For stable training of generative adversarial networks (GANs), injecting instance noise into the input of the discriminator is considered as a theoretically sound solution, which, however, has not yet delivered on its promise in practice. This paper introduces Diffusion-GAN that employs a Gaussian mixture distribution, defined over all the diffusion steps of a forward diffusion chain, to inject instance noise. A random sample from the mixture, which is diffused from an observed or generated data, is fed as the input to the discriminator. The generator is updated by backpropagating its gradient through the forward diffusion chain, whose length is adaptively adjusted to control the maximum noise-to-data ratio allowed at each training step. Theoretical analysis verifies the soundness of the proposed Diffusion-GAN, which provides model- and domain-agnostic differentiable augmentation. A rich set of experiments on diverse datasets show that Diffusion-GAN can provide stable and data-efficient GAN training, bringing consistent performance improvement over strong GAN baselines for synthesizing photo-realistic images.

The distributional reinforcement learning (RL) approach advocates for representing the complete probability distribution of the random return instead of only modelling its expectation. A distributional RL algorithm may be characterised by two main components, namely the representation of the distribution together with its parameterisation and the probability metric defining the loss. The present research work considers the unconstrained monotonic neural network (UMNN) architecture, a universal approximator of continuous monotonic functions which is particularly well suited for modelling different representations of a distribution (PDF, CDF, QF). This property enables the efficient decoupling of the effect of the function approximator class from that of the probability metric. The research paper firstly introduces a methodology for learning different representations of the random return distribution. Secondly, a novel distributional RL algorithm named unconstrained monotonic deep Q-network (UMDQN) is presented. Lastly, in light of this new algorithm, an empirical comparison is performed between three probability quasimetrics, namely the Kullback-Leibler divergence, Cramer distance, and Wasserstein distance. The results highlight the main strengths and weaknesses associated with each probability metric together with an important limitation of the Wasserstein distance. This research concludes by calling for a reconsideration of all probability metrics in distributional RL, contrasting with the clear dominance of the Wasserstein distance in recent publications.

The encoder network of an autoencoder is an approximation of the nearest point projection onto the manifold spanned by the decoder. A concern with this approximation is that, while the output of the encoder is always unique, the projection can possibly have infinitely many values. This implies that the latent representations learned by the autoencoder can be misleading. Borrowing from geometric measure theory, we introduce the idea of using the reach of the manifold spanned by the decoder to determine if an optimal encoder exists for a given dataset and decoder. We develop a local generalization of this reach and propose a numerical estimator thereof. We demonstrate that this allows us to determine which observations can be expected to have a unique, and thereby trustworthy, latent representation. As our local reach estimator is differentiable, we investigate its usage as a regularizer and show that this leads to learned manifolds for which projections are more often unique than without regularization.

Snow is one of the toughest adverse weather conditions for object detection (OD). Currently, not only there is a lack of snowy OD datasets to train cutting-edge detectors, but also these detectors have difficulties learning latent information beneficial for detection in snow. To alleviate the two above problems, we first establish a real-world snowy OD dataset, named RSOD. Besides, we develop an unsupervised training strategy with a distinctive activation function, called $Peak \ Act$, to quantitatively evaluate the effect of snow on each object. Peak Act helps grading the images in RSOD into four-difficulty levels. To our knowledge, RSOD is the first quantitatively evaluated and graded snowy OD dataset. Then, we propose a novel Cross Fusion (CF) block to construct a lightweight OD network based on YOLOv5s (call CF-YOLO). CF is a plug-and-play feature aggregation module, which integrates the advantages of Feature Pyramid Network and Path Aggregation Network in a simpler yet more flexible form. Both RSOD and CF lead our CF-YOLO to possess an optimization ability for OD in real-world snow. That is, CF-YOLO can handle unfavorable detection problems of vagueness, distortion and covering of snow. Experiments show that our CF-YOLO achieves better detection results on RSOD, compared to SOTAs. The code and dataset are available at //github.com/qqding77/CF-YOLO-and-RSOD.

Knowledge Distillation (KD) is a widely-used technology to inherit information from cumbersome teacher models to compact student models, consequently realizing model compression and acceleration. Compared with image classification, object detection is a more complex task, and designing specific KD methods for object detection is non-trivial. In this work, we elaborately study the behaviour difference between the teacher and student detection models, and obtain two intriguing observations: First, the teacher and student rank their detected candidate boxes quite differently, which results in their precision discrepancy. Second, there is a considerable gap between the feature response differences and prediction differences between teacher and student, indicating that equally imitating all the feature maps of the teacher is the sub-optimal choice for improving the student's accuracy. Based on the two observations, we propose Rank Mimicking (RM) and Prediction-guided Feature Imitation (PFI) for distilling one-stage detectors, respectively. RM takes the rank of candidate boxes from teachers as a new form of knowledge to distill, which consistently outperforms the traditional soft label distillation. PFI attempts to correlate feature differences with prediction differences, making feature imitation directly help to improve the student's accuracy. On MS COCO and PASCAL VOC benchmarks, extensive experiments are conducted on various detectors with different backbones to validate the effectiveness of our method. Specifically, RetinaNet with ResNet50 achieves 40.4% mAP in MS COCO, which is 3.5% higher than its baseline, and also outperforms previous KD methods.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司