亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is well known that the independence of the sample mean and the sample variance characterizes the normal distribution. By using Anosov's theorem, we further investigate the analogous characteristic properties in terms of the sample mean and some feasible definite statistics. The latter statistics introduced in this paper for the first time are based on nonnegative, definite and continuous functions of ordered arguments with positive degree of homogeneity. The proposed approach seems to be natural and can be used to derive easily characterization results for many feasible definite statistics, such as known characterizations involving the sample variance, sample range as well as Gini's mean difference.

相關內容

We study algorithmic applications of a natural discretization for the hard-sphere model and the Widom-Rowlinson model in a region $\mathbb{V}\subset\mathbb{R}^d$. These models are used in statistical physics to describe mixtures of one or multiple particle types subjected to hard-core interactions. For each type, particles follow a Poisson point process with a type specific activity parameter (fugacity). The Gibbs distribution is characterized by the mixture of these point processes conditioned that no two particles are closer than a type-dependent distance threshold. A key part in better understanding the Gibbs distribution is its normalizing constant, called partition function. We give sufficient conditions that the partition function of a discrete hard-core model on a geometric graph based on a point set $X \subset \mathbb{V}$ closely approximates those of such continuous models. Previously, this was only shown for the hard-sphere model on cubic regions $\mathbb{V}=[0, \ell)^d$ when $X$ is exponential in the volume of the region $\nu(\mathbb{V})$, limiting algorithmic applications. In the same setting, our refined analysis only requires a quadratic number of points, which we argue to be tight. We use our improved discretization results to approximate the partition functions of the hard-sphere model and the Widom-Rowlinson efficiently in $\nu(\mathbb{V})$. For the hard-sphere model, we obtain the first quasi-polynomial deterministic approximation algorithm for the entire fugacity regime for which, so far, only randomized approximations are known. Furthermore, we simplify a recently introduced fully polynomial randomized approximation algorithm. Similarly, we obtain the best known deterministic and randomized approximation bounds for the Widom-Rowlinson model. Moreover, we obtain approximate sampling algorithms for the respective spin systems within the same fugacity regimes.

Recently geometric hypergraphs that can be defined by intersections of pseudohalfplanes with a finite point set were defined in a purely combinatorial way. This led to extensions of earlier results about points and halfplanes to pseudohalfplanes, including polychromatic colorings and discrete Helly-type theorems about pseudohalfplanes. Here we continue this line of research and introduce the notion of convex sets of such pseudohalfplane hypergraphs. In this context we prove several results corresponding to classical results about convexity, namely Helly Theorem, Carath\'eodory's Theorem, Kirchberger's Theorem, Separation Theorem, Radon's Theorem and the Cup-Cap Theorem. These results imply the respective results about pseudoconvex sets in the plane defined using pseudohalfplanes. It turns out that most of our results can be also proved using oriented matroids and topological affine planes (TAPs) but our approach is different from both of them. Compared to oriented matroids, our theory is based on a linear ordering of the vertex set which makes our definitions and proofs quite different and perhaps more elementary. Compared to TAPs, which are continuous objects, our proofs are purely combinatorial and again quite different in flavor. Altogether, we believe that our new approach can further our understanding of these fundamental convexity results.

When the regression function belongs to the standard smooth classes consisting of univariate functions with derivatives up to the $(\gamma+1)$th order bounded in absolute values by a common constant everywhere or a.e., it is well known that the minimax optimal rate of convergence in mean squared error (MSE) is $\left(\frac{\sigma^{2}}{n}\right)^{\frac{2\gamma+2}{2\gamma+3}}$ when $\gamma$ is finite and the sample size $n\rightarrow\infty$. From a nonasymptotic viewpoint that does not take $n$ to infinity, this paper shows that: for the standard H\"older and Sobolev classes, the minimax optimal rate is $\frac{\sigma^{2}\left(\gamma+1\right)}{n}$ ($\succsim\left(\frac{\sigma^{2}}{n}\right)^{\frac{2\gamma+2}{2\gamma+3}}$) when $\frac{n}{\sigma^{2}}\precsim\left(\gamma+1\right)^{2\gamma+3}$ and $\left(\frac{\sigma^{2}}{n}\right)^{\frac{2\gamma+2}{2\gamma+3}}$ ($\succsim\frac{\sigma^{2}\left(\gamma+1\right)}{n}$) when $\frac{n}{\sigma^{2}}\succsim\left(\gamma+1\right)^{2\gamma+3}$. To establish these results, we derive upper and lower bounds on the covering and packing numbers for the generalized H\"older class where the absolute value of the $k$th ($k=0,...,\gamma$) derivative is bounded by a parameter $R_{k}$ and the $\gamma$th derivative is $R_{\gamma+1}-$Lipschitz (and also for the generalized ellipsoid class of smooth functions). Our bounds sharpen the classical metric entropy results for the standard classes, and give the general dependence on $\gamma$ and $R_{k}$. By deriving the minimax optimal MSE rates under various (well motivated) $R_{k}$s for the smooth classes with the help of our new entropy bounds, we show several interesting results that cannot be shown with the existing entropy bounds in the literature.

This paper proposes a regularization of the Monge-Amp\`ere equation in planar convex domains through uniformly elliptic Hamilton-Jacobi-Bellman equations. The regularized problem possesses a unique strong solution $u_\varepsilon$ and is accessible to the discretization with finite elements. This work establishes locally uniform convergence of $u_\varepsilon$ to the convex Alexandrov solution $u$ to the Monge-Amp\`ere equation as the regularization parameter $\varepsilon$ approaches $0$. A mixed finite element method for the approximation of $u_\varepsilon$ is proposed, and the regularized finite element scheme is shown to be locally uniformly convergent. Numerical experiments provide empirical evidence for the efficient approximation of singular solutions $u$.

This note provides some new inequalities and approximations for beta distributions, including exponential tail inequalities, inequalities of Hoeffding type, and Gaussian tail inequalities and approximations. Some of the results are extended to Gamma distributions.

We develop a new continuous-time stochastic gradient descent method for optimizing over the stationary distribution of stochastic differential equation (SDE) models. The algorithm continuously updates the SDE model's parameters using an estimate for the gradient of the stationary distribution. The gradient estimate is simultaneously updated, asymptotically converging to the direction of steepest descent. We rigorously prove convergence of our online algorithm for linear SDE models and present numerical results for nonlinear examples. The proof requires analysis of the fluctuations of the parameter evolution around the direction of steepest descent. Bounds on the fluctuations are challenging to obtain due to the online nature of the algorithm (e.g., the stationary distribution will continuously change as the parameters change). We prove bounds for the solutions of a new class of Poisson partial differential equations, which are then used to analyze the parameter fluctuations in the algorithm.

Recently, codes in the sum-rank metric attracted attention due to several applications in e.g. multishot network coding, distributed storage and quantum-resistant cryptography. The sum-rank analogs of Reed-Solomon and Gabidulin codes are linearized Reed-Solomon codes. We show how to construct $h$-folded linearized Reed-Solomon (FLRS) codes and derive an interpolation-based decoding scheme that is capable of correcting sum-rank errors beyond the unique decoding radius. The presented decoder can be used for either list or probabilistic unique decoding and requires at most $\mathcal{O}(sn^2)$ operations in $\mathbb{F}_{q^m}$, where $s \leq h$ is an interpolation parameter and $n$ denotes the length of the unfolded code. We derive a heuristic upper bound on the failure probability of the probabilistic unique decoder and verify the results via Monte Carlo simulations.

We consider the problem introduced by \cite{Mason2020} of identifying all the $\varepsilon$-optimal arms in a finite stochastic multi-armed bandit with Gaussian rewards. In the fixed confidence setting, we give a lower bound on the number of samples required by any algorithm that returns the set of $\varepsilon$-good arms with a failure probability less than some risk level $\delta$. This bound writes as $T_{\varepsilon}^*(\mu)\log(1/\delta)$, where $T_{\varepsilon}^*(\mu)$ is a characteristic time that depends on the vector of mean rewards $\mu$ and the accuracy parameter $\varepsilon$. We also provide an efficient numerical method to solve the convex max-min program that defines the characteristic time. Our method is based on a complete characterization of the alternative bandit instances that the optimal sampling strategy needs to rule out, thus making our bound tighter than the one provided by \cite{Mason2020}. Using this method, we propose a Track-and-Stop algorithm that identifies the set of $\varepsilon$-good arms w.h.p and enjoys asymptotic optimality (when $\delta$ goes to zero) in terms of the expected sample complexity. Finally, using numerical simulations, we demonstrate our algorithm's advantage over state-of-the-art methods, even for moderate values of the risk parameter.

This work addresses a version of the two-armed Bernoulli bandit problem where the sum of the means of the arms is one (the symmetric two-armed Bernoulli bandit). In a regime where the gap between these means goes to zero and the number of prediction periods approaches infinity, we obtain the leading order terms of the expected regret and pseudoregret for this problem by associating each of them with a solution of a linear parabolic partial differential equation. Our results improve upon the previously known results; specifically we explicitly compute the leading order term of the optimal regret and pseudoregret in three different scaling regimes for the gap. Additionally, we obtain new non-asymptotic bounds for any given time horizon.

Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.

北京阿比特科技有限公司