In this paper, we explore effective prompting techniques to enhance zero- and few-shot Visual Question Answering (VQA) performance in contemporary Vision-Language Models (VLMs). Central to our investigation is the role of question templates in guiding VLMs to generate accurate answers. We identify that specific templates significantly influence VQA outcomes, underscoring the need for strategic template selection. Another pivotal aspect of our study is augmenting VLMs with image captions, providing them with additional visual cues alongside direct image features in VQA tasks. Surprisingly, this augmentation significantly improves the VLMs' performance in many cases, even though VLMs "see" the image directly! We explore chain-of-thought (CoT) reasoning and find that while standard CoT reasoning causes drops in performance, advanced methods like self-consistency can help recover it. Furthermore, we find that text-only few-shot examples enhance VLMs' alignment with the task format, particularly benefiting models prone to verbose zero-shot answers. Lastly, to mitigate the challenges associated with evaluating free-form open-ended VQA responses using string-matching based VQA metrics, we introduce a straightforward LLM-guided pre-processing technique to adapt the model responses to the expected ground-truth answer distribution. In summary, our research sheds light on the intricacies of prompting strategies in VLMs for VQA, emphasizing the synergistic use of captions, templates, and pre-processing to enhance model efficacy.
This paper proposes an interpretation of RLAIF as Bayesian inference by introducing distilled Self-Critique (dSC), which refines the outputs of a LLM through a Gibbs sampler that is later distilled into a fine-tuned model. Only requiring synthetic data, dSC is exercised in experiments regarding safety, sentiment, and privacy control, showing it can be a viable and cheap alternative to align LLMs. Code released at \url{//github.com/vicgalle/distilled-self-critique}.
Configuring and evolving dashboards in complex and large-scale Systems-of-Systems (SoS) can be an expensive and cumbersome task due to the many Key Performance Indicators (KPIs) that are usually collected and have to be arranged in a number of visualizations. Unfortunately, setting up dashboards is still a largely manual and error-prone task requiring extensive human intervention. This short paper describes emerging results about the definition of a model-driven technology-agnostic approach that can automatically transform a simple list of KPIs into a dashboard model, and then translate the model into an actual dashboard for a target dashboard technology. Dashboard customization can be efficiently obtained by solely modifying the abstract model representation, freeing operators from expensive interactions with actual dashboards.
In this paper, we investigate the interplay between attention heads and specialized "next-token" neurons in the Multilayer Perceptron that predict specific tokens. By prompting an LLM like GPT-4 to explain these model internals, we can elucidate attention mechanisms that activate certain next-token neurons. Our analysis identifies attention heads that recognize contexts relevant to predicting a particular token, activating the associated neuron through the residual connection. We focus specifically on heads in earlier layers consistently activating the same next-token neuron across similar prompts. Exploring these differential activation patterns reveals that heads that specialize for distinct linguistic contexts are tied to generating certain tokens. Overall, our method combines neural explanations and probing isolated components to illuminate how attention enables context-dependent, specialized processing in LLMs.
In this paper, we present a new method to efficiently generate jets in High Energy Physics called PC-JeDi. This method utilises score-based diffusion models in conjunction with transformers which are well suited to the task of generating jets as particle clouds due to their permutation equivariance. PC-JeDi achieves competitive performance with current state-of-the-art methods across several metrics that evaluate the quality of the generated jets. Although slower than other models, due to the large number of forward passes required by diffusion models, it is still substantially faster than traditional detailed simulation. Furthermore, PC-JeDi uses conditional generation to produce jets with a desired mass and transverse momentum for two different particles, top quarks and gluons.
This paper introduces an Electric Vehicle Charging Station (EVCS) model that incorporates real-world constraints, such as slot power limitations, contract threshold overruns penalties, or early disconnections of electric vehicles (EVs). We propose a formulation of the problem of EVCS control under uncertainty, and implement two Multi-Stage Stochastic Programming approaches that leverage user-provided information, namely, Model Predictive Control and Two-Stage Stochastic Programming. The model addresses uncertainties in charging session start and end times, as well as in energy demand. A user's behavior model based on a sojourn-time-dependent stochastic process enhances cost reduction while maintaining customer satisfaction. The benefits of the two proposed methods are showcased against two baselines over a 22-day simulation using a real-world dataset. The two-stage approach proves robust against early disconnections, considering a more significant number of uncertainty scenarios for optimization. The algorithm prioritizing user satisfaction over electricity cost achieves a 20% and 36% improvement in two user satisfaction metrics compared to an industry-standard baseline. Additionally, the algorithm striking the best balance between cost and user satisfaction exhibits a mere 3% relative cost increase compared to the theoretically optimal baseline - for which the nonanticipativity constraint is relaxed - while attaining 94% and 84% of the user satisfaction performance in the two used satisfaction metrics.
This paper proposes an Intrusion Detection System (IDS) employing the Harris Hawks Optimization algorithm (HHO) to optimize Multilayer Perceptron learning by optimizing bias and weight parameters. HHO-MLP aims to select optimal parameters in its learning process to minimize intrusion detection errors in networks. HHO-MLP has been implemented using EvoloPy NN framework, an open-source Python tool specialized for training MLPs using evolutionary algorithms. For purposes of comparing the HHO model against other evolutionary methodologies currently available, specificity and sensitivity measures, accuracy measures, and mse and rmse measures have been calculated using KDD datasets. Experiments have demonstrated the HHO MLP method is effective at identifying malicious patterns. HHO-MLP has been tested against evolutionary algorithms like Butterfly Optimization Algorithm (BOA), Grasshopper Optimization Algorithms (GOA), and Black Widow Optimizations (BOW), with validation by Random Forest (RF), XG-Boost. HHO-MLP showed superior performance by attaining top scores with accuracy rate of 93.17%, sensitivity level of 89.25%, and specificity percentage of 95.41%.
Risk mitigation techniques are critical to avoiding accidents associated with driving behaviour. We provide a novel Multi-Class Driver Distraction Risk Assessment (MDDRA) model that considers the vehicle, driver, and environmental data during a journey. MDDRA categorises the driver on a risk matrix as safe, careless, or dangerous. It offers flexibility in adjusting the parameters and weights to consider each event on a specific severity level. We collect real-world data using the Field Operation Test (TeleFOT), covering drivers using the same routes in the East Midlands, United Kingdom (UK). The results show that reducing road accidents caused by driver distraction is possible. We also study the correlation between distraction (driver, vehicle, and environment) and the classification severity based on a continuous distraction severity score. Furthermore, we apply machine learning techniques to classify and predict driver distraction according to severity levels to aid the transition of control from the driver to the vehicle (vehicle takeover) when a situation is deemed risky. The Ensemble Bagged Trees algorithm performed best, with an accuracy of 96.2%.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.