The recognition of information in floor plan data requires the use of detection and segmentation models. However, relying on several single-task models can result in ineffective utilization of relevant information when there are multiple tasks present simultaneously. To address this challenge, we introduce MuraNet, an attention-based multi-task model for segmentation and detection tasks in floor plan data. In MuraNet, we adopt a unified encoder called MURA as the backbone with two separated branches: an enhanced segmentation decoder branch and a decoupled detection head branch based on YOLOX, for segmentation and detection tasks respectively. The architecture of MuraNet is designed to leverage the fact that walls, doors, and windows usually constitute the primary structure of a floor plan's architecture. By jointly training the model on both detection and segmentation tasks, we believe MuraNet can effectively extract and utilize relevant features for both tasks. Our experiments on the CubiCasa5k public dataset show that MuraNet improves convergence speed during training compared to single-task models like U-Net and YOLOv3. Moreover, we observe improvements in the average AP and IoU in detection and segmentation tasks, respectively.Our ablation experiments demonstrate that the attention-based unified backbone of MuraNet achieves better feature extraction in floor plan recognition tasks, and the use of decoupled multi-head branches for different tasks further improves model performance. We believe that our proposed MuraNet model can address the disadvantages of single-task models and improve the accuracy and efficiency of floor plan data recognition.
Current gesture recognition systems primarily focus on identifying gestures within a predefined set, leaving a gap in connecting these gestures to interactive GUI elements or system functions (e.g., linking a 'thumb-up' gesture to a 'like' button). We introduce GestureGPT, a novel zero-shot gesture understanding and grounding framework leveraging large language models (LLMs). Gesture descriptions are formulated based on hand landmark coordinates from gesture videos and fed into our dual-agent dialogue system. A gesture agent deciphers these descriptions and queries about the interaction context (e.g., interface, history, gaze data), which a context agent organizes and provides. Following iterative exchanges, the gesture agent discerns user intent, grounding it to an interactive function. We validated the gesture description module using public first-view and third-view gesture datasets and tested the whole system in two real-world settings: video streaming and smart home IoT control. The highest zero-shot Top-5 grounding accuracies are 80.11% for video streaming and 90.78% for smart home tasks, showing potential of the new gesture understanding paradigm.
Given the ubiquitous use of tabular data in industries and the growing concerns in data privacy and security, tabular data synthesis emerges as a critical research area. The recent state-of-the-art methods show that large language models (LLMs) can be adopted to generate realistic tabular data. As LLMs pre-process tabular data as full text, they have the advantage of avoiding the curse of dimensionality associated with one-hot encoding high-dimensional data. However, their long training time and limited re-usability on new tasks prevent them from replacing exiting tabular generative models. In this paper, we propose Tabula, a tabular data synthesizer based on the language model structure. Through Tabula, we demonstrate the inherent limitation of employing pre-trained language models designed for natural language processing (NLP) in the context of tabular data synthesis. Our investigation delves into the development of a dedicated foundational model tailored specifically for tabular data synthesis. Additionally, we propose a token sequence compression strategy to significantly reduce training time while preserving the quality of synthetic data. Extensive experiments on six datasets demonstrate that using a language model structure without loading the well-trained model weights yields a better starting model for tabular data synthesis. Moreover, the Tabula model, previously trained on other tabular data, serves as an excellent foundation model for new tabular data synthesis tasks. Additionally, the token sequence compression method substantially reduces the model's training time. Results show that Tabula averagely reduces 46.2% training time per epoch comparing to current LLMs-based state-of-the-art algorithm and consistently achieves even higher synthetic data utility.
Inter-modal image registration (IMIR) and image segmentation with abdominal Ultrasound (US) data has many important clinical applications, including image-guided surgery, automatic organ measurement and robotic navigation. However, research is severely limited by the lack of public datasets. We propose TRUSTED (the Tridimensional Renal Ultra Sound TomodEnsitometrie Dataset), comprising paired transabdominal 3DUS and CT kidney images from 48 human patients (96 kidneys), including segmentation, and anatomical landmark annotations by two experienced radiographers. Inter-rater segmentation agreement was over 94 (Dice score), and gold-standard segmentations were generated using the STAPLE algorithm. Seven anatomical landmarks were annotated, important for IMIR systems development and evaluation. To validate the dataset's utility, 5 competitive Deep Learning models for automatic kidney segmentation were benchmarked, yielding average DICE scores from 83.2% to 89.1% for CT, and 61.9% to 79.4% for US images. Three IMIR methods were benchmarked, and Coherent Point Drift performed best with an average Target Registration Error of 4.53mm. The TRUSTED dataset may be used freely researchers to develop and validate new segmentation and IMIR methods.
Knowledge graph completion (KGC) aims to discover missing relations of query entities. Current text-based models utilize the entity name and description to infer the tail entity given the head entity and a certain relation. Existing approaches also consider the neighborhood of the head entity. However, these methods tend to model the neighborhood using a flat structure and are only restricted to 1-hop neighbors. In this work, we propose a node neighborhood-enhanced framework for knowledge graph completion. It models the head entity neighborhood from multiple hops using graph neural networks to enrich the head node information. Moreover, we introduce an additional edge link prediction task to improve KGC. Evaluation on two public datasets shows that this framework is simple yet effective. The case study also shows that the model is able to predict explainable predictions.
We address the challenge of training a large supernet for the object detection task, using a relatively small amount of training data. Specifically, we propose an efficient supernet-based neural architecture search (NAS) method that uses search space pruning. The search space defined by the supernet is pruned by removing candidate models that are predicted to perform poorly. To effectively remove the candidates over a wide range of resource constraints, we particularly design a performance predictor for supernet, called path filter, which is conditioned by resource constraints and can accurately predict the relative performance of the models that satisfy similar resource constraints. Hence, supernet training is more focused on the best-performing candidates. Our path filter handles prediction for paths with different resource budgets. Compared to once-for-all, our proposed method reduces the computational cost of the optimal network architecture by 30% and 63%, while yielding better accuracy-floating point operations Pareto front (0.85 and 0.45 points of improvement on average precision for Pascal VOC and COCO, respectively).
We study design of black-box model extraction attacks that can send minimal number of queries from a publicly available dataset to a target ML model through a predictive API with an aim to create an informative and distributionally equivalent replica of the target. First, we define distributionally equivalent and Max-Information model extraction attacks, and reduce them into a variational optimisation problem. The attacker sequentially solves this optimisation problem to select the most informative queries that simultaneously maximise the entropy and reduce the mismatch between the target and the stolen models. This leads to an active sampling-based query selection algorithm, Marich, which is model-oblivious. Then, we evaluate Marich on different text and image data sets, and different models, including CNNs and BERT. Marich extracts models that achieve $\sim 60-95\%$ of true model's accuracy and uses $\sim 1,000 - 8,500$ queries from the publicly available datasets, which are different from the private training datasets. Models extracted by Marich yield prediction distributions, which are $\sim 2-4\times$ closer to the target's distribution in comparison to the existing active sampling-based attacks. The extracted models also lead to $84-96\%$ accuracy under membership inference attacks. Experimental results validate that Marich is query-efficient, and capable of performing task-accurate, high-fidelity, and informative model extraction.
This study addresses the vital role of data analytics in monitoring fertiliser applications in crop cultivation. Inaccurate fertiliser application decisions can lead to costly consequences, hinder food production, and cause environmental harm. We propose a solution to predict nutrient application by determining required fertiliser quantities for an entire season. The proposed solution recommends adjusting fertiliser amounts based on weather conditions and soil characteristics to promote cost-effective and environmentally friendly agriculture. The collected dataset is high-dimensional and heterogeneous. Our research examines large-scale heterogeneous datasets in the context of the decision-making process, encompassing data collection and analysis. We also study the impact of fertiliser applications combined with weather data on crop yield, using the winter wheat crop as a case study. By understanding local contextual and geographic factors, we aspire to stabilise or even reduce the demand for agricultural nutrients while enhancing crop development. The proposed approach is proven to be efficient and scalable, as it is validated using a real-world and large dataset.
Data Augmentation through generating pseudo data has been proven effective in mitigating the challenge of data scarcity in the field of Grammatical Error Correction (GEC). Various augmentation strategies have been widely explored, most of which are motivated by two heuristics, i.e., increasing the distribution similarity and diversity of pseudo data. However, the underlying mechanism responsible for the effectiveness of these strategies remains poorly understood. In this paper, we aim to clarify how data augmentation improves GEC models. To this end, we introduce two interpretable and computationally efficient measures: Affinity and Diversity. Our findings indicate that an excellent GEC data augmentation strategy characterized by high Affinity and appropriate Diversity can better improve the performance of GEC models. Based on this observation, we propose MixEdit, a data augmentation approach that strategically and dynamically augments realistic data, without requiring extra monolingual corpora. To verify the correctness of our findings and the effectiveness of the proposed MixEdit, we conduct experiments on mainstream English and Chinese GEC datasets. The results show that MixEdit substantially improves GEC models and is complementary to traditional data augmentation methods.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.