Existing black box modeling approaches in machine learning suffer from a fixed input and output feature combination. In this paper, a new approach to reconstruct missing variables in a set of time series is presented. An autoencoder is trained as usual with every feature on both sides and the neural network parameters are fixed after this training. Then, the searched variables are defined as missing variables at the autoencoder input and optimized via automatic differentiation. This optimization is performed with respect to the available features loss calculation. With this method, different input and output feature combinations of the trained model can be realized by defining the searched variables as missing variables and reconstructing them. The combination can be changed without training the autoencoder again. The approach is evaluated on the base of a strongly nonlinear electrical component. It is working well for one of four variables missing and generally even for multiple missing variables.
We investigate a novel modeling approach for end-to-end neural network training using hidden Markov models (HMM) where the transition probabilities between hidden states are modeled and learned explicitly. Most contemporary sequence-to-sequence models allow for from-scratch training by summing over all possible label segmentations in a given topology. In our approach there are explicit, learnable probabilities for transitions between segments as opposed to a blank label that implicitly encodes duration statistics. We implement a GPU-based forward-backward algorithm that enables the simultaneous training of label and transition probabilities. We investigate recognition results and additionally Viterbi alignments of our models. We find that while the transition model training does not improve recognition performance, it has a positive impact on the alignment quality. The generated alignments are shown to be viable targets in state-of-the-art Viterbi trainings.
This paper develops a class of potential outcomes models characterized by three main features: (i) Unobserved heterogeneity can be represented by a vector of potential outcomes and a type describing the manner in which an instrument determines the choice of treatment; (ii) The availability of an instrumental variable that is conditionally independent of unobserved heterogeneity; and (iii) The imposition of convex restrictions on the distribution of unobserved heterogeneity. The proposed class of models encompasses multiple classical and novel research designs, yet possesses a common structure that permits a unifying analysis of identification and estimation. In particular, we establish that these models share a common necessary and sufficient condition for identifying certain causal parameters. Our identification results are constructive in that they yield estimating moment conditions for the parameters of interest. Focusing on a leading special case of our framework, we further show how these estimating moment conditions may be modified to be doubly robust. The corresponding double robust estimators are shown to be asymptotically normally distributed, bootstrap based inference is shown to be asymptotically valid, and the semi-parametric efficiency bound is derived for those parameters that are root-n estimable. We illustrate the usefulness of our results for developing, identifying, and estimating causal models through an empirical evaluation of the role of mental health as a mediating variable in the Moving To Opportunity experiment.
We propose a new distributed-computing model, inspired by permissionless distributed systems such as Bitcoin and Ethereum, that allows studying permissionless consensus in a mathematically regular setting. Like in the sleepy model of Pass and Shi, we consider a synchronous, round-by-round message-passing system in which the set of online processors changes each round. Unlike the sleepy model, the set of processors may be infinite. Moreover, processors never fail; instead, an adversary can temporarily or permanently impersonate some processors. Finally, processors have access to a strong form of message-authentication that authenticates not only the sender of a message but also the round in which the message was sent. Assuming that, each round, the adversary impersonates less than 1/2 of the online processors, we present two consensus algorithms. The first ensures deterministic safety and constant latency in expectation, assuming a probabilistic leader-election oracle. The second ensures deterministic safety and deterministic liveness assuming irrevocable impersonation and eventually-stabilizing participation. The model is unrealistic in full generality. However, if we assume finitely many processes and that the set of faulty processes remains constant, the model coincides with a practically-motivated model: the static version of the sleepy model.
The optimal branch number of MDS matrices makes them a preferred choice for designing diffusion layers in many block ciphers and hash functions. Consequently, various methods have been proposed for designing MDS matrices, including search and direct methods. While exhaustive search is suitable for small order MDS matrices, direct constructions are preferred for larger orders due to the vast search space involved. In the literature, there has been extensive research on the direct construction of MDS matrices using both recursive and nonrecursive methods. On the other hand, in lightweight cryptography, Near-MDS (NMDS) matrices with sub-optimal branch numbers offer a better balance between security and efficiency as a diffusion layer compared to MDS matrices. However, no direct construction method is available in the literature for constructing recursive NMDS matrices. This paper introduces some direct constructions of NMDS matrices in both nonrecursive and recursive settings. Additionally, it presents some direct constructions of nonrecursive MDS matrices from the generalized Vandermonde matrices. We propose a method for constructing involutory MDS and NMDS matrices using generalized Vandermonde matrices. Furthermore, we prove some folklore results that are used in the literature related to the NMDS code.
The chain graph model admits both undirected and directed edges in one graph, where symmetric conditional dependencies are encoded via undirected edges and asymmetric causal relations are encoded via directed edges. Though frequently encountered in practice, the chain graph model has been largely under investigated in literature, possibly due to the lack of identifiability conditions between undirected and directed edges. In this paper, we first establish a set of novel identifiability conditions for the Gaussian chain graph model, exploiting a low rank plus sparse decomposition of the precision matrix. Further, an efficient learning algorithm is built upon the identifiability conditions to fully recover the chain graph structure. Theoretical analysis on the proposed method is conducted, assuring its asymptotic consistency in recovering the exact chain graph structure. The advantage of the proposed method is also supported by numerical experiments on both simulated examples and a real application on the Standard & Poor 500 index data.
Real-world deployment of machine learning models is challenging because data evolves over time. While no model can work when data evolves in an arbitrary fashion, if there is some pattern to these changes, we might be able to design methods to address it. This paper addresses situations when data evolves gradually. We introduce a time-varying propensity score that can detect gradual shifts in the distribution of data which allows us to selectively sample past data to update the model -- not just similar data from the past like that of a standard propensity score but also data that evolved in a similar fashion in the past. The time-varying propensity score is quite general: we demonstrate different ways of implementing it and evaluate it on a variety of problems ranging from supervised learning (e.g., image classification problems) where data undergoes a sequence of gradual shifts, to reinforcement learning tasks (e.g., robotic manipulation and continuous control) where data shifts as the policy or the task changes.
We present an acceleration method for sequences of large-scale linear systems, such as the ones arising from the numerical solution of time-dependent partial differential equations coupled with algebraic constraints. We discuss different approaches to leverage the subspace containing the history of solutions computed at previous time steps in order to generate a good initial guess for the iterative solver. In particular, we propose a novel combination of reduced-order projection with randomized linear algebra techniques, which drastically reduces the number of iterations needed for convergence. We analyze the accuracy of the initial guess produced by the reduced-order projection when the coefficients of the linear system depend analytically on time. Extending extrapolation results by Demanet and Townsend to a vector-valued setting, we show that the accuracy improves rapidly as the size of the history increases, a theoretical result confirmed by our numerical observations. In particular, we apply the developed method to the simulation of plasma turbulence in the boundary of a fusion device, showing that the time needed for solving the linear systems is significantly reduced.
Privacy and Byzantine resilience (BR) are two crucial requirements of modern-day distributed machine learning. The two concepts have been extensively studied individually but the question of how to combine them effectively remains unanswered. This paper contributes to addressing this question by studying the extent to which the distributed SGD algorithm, in the standard parameter-server architecture, can learn an accurate model despite (a) a fraction of the workers being malicious (Byzantine), and (b) the other fraction, whilst being honest, providing noisy information to the server to ensure differential privacy (DP). We first observe that the integration of standard practices in DP and BR is not straightforward. In fact, we show that many existing results on the convergence of distributed SGD under Byzantine faults, especially those relying on $(\alpha,f)$-Byzantine resilience, are rendered invalid when honest workers enforce DP. To circumvent this shortcoming, we revisit the theory of $(\alpha,f)$-BR to obtain an approximate convergence guarantee. Our analysis provides key insights on how to improve this guarantee through hyperparameter optimization. Essentially, our theoretical and empirical results show that (1) an imprudent combination of standard approaches to DP and BR might be fruitless, but (2) by carefully re-tuning the learning algorithm, we can obtain reasonable learning accuracy while simultaneously guaranteeing DP and BR.
Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.