We consider weak convergence of one-step schemes for solving stochastic differential equations (SDEs) with one-sided Lipschitz conditions. It is known that the super-linear coefficients may lead to a blowup of moments of solutions and their numerical solutions. When solutions to SDEs have all finite moments, weak convergence of numerical schemes has been investigated in [Wang et al (2023), Weak error analysis for strong approximation schemes of SDEs with super-linear coefficients, IMA Journal numerical analysis]. Some modified Euler schemes have been analyzed for weak convergence. In this work, we present a family of explicit schemes of first and second-order weak convergence based on classical schemes for SDEs. We explore the effects of limited moments on these schemes. We provide a systematic but simple way to establish weak convergence orders for schemes based on approximations/modifications of drift and diffusion coefficients. We present several numerical examples of these schemes and show their weak convergence orders.
This paper explores the explicit design of quantum circuits for quantum simulation of partial differential equations (PDEs) with physical boundary conditions. These equations and/or their discretized forms usually do not evolve via unitary dynamics, thus are not suitable for quantum simulation. Boundary conditions (either time-dependent or independent) make the problem more difficult. To tackle this challenge, the Schrodingerisation method can be employed, which converts linear partial and ordinary differential equations with non-unitary dynamics into systems of Schrodinger-type equations, via the so-called warped phase transformation that maps the equation into one higher dimension. Despite advancements in Schrodingerisation techniques, the explicit implementation of quantum circuits for solving general PDEs, especially with physical boundary conditions, remains underdeveloped. We present two methods for handling the inhomogeneous terms arising from time-dependent physical boundary conditions. One approach utilizes Duhamel's principle to express the solution in integral form and employs linear combination of unitaries (LCU) for coherent state preparation. Another method applies an augmentation to transform the inhomogeneous problem into a homogeneous one. We then apply the quantum simulation technique from [CJL23] to transform the resulting non-autonomous system to an autonomous system in one higher dimension. We provide detailed implementations of these two methods and conduct a comprehensive complexity analysis in terms of queries to the time evolution input oracle.
A nonlinear algebraic equation system of 5 variables is numerically solved, which is derived from the application of the Fourier transform to a differential equation system that allows modeling the behavior of the temperatures and the efficiencies of a hybrid solar receiver, which in simple terms is the combination of a photovoltaic system with a thermoelectric system. In addition, a way to reduce the previous system to a nonlinear system of only 2 variables is presented. Naturally, reducing algebraic equation systems of dimension N to systems of smaller dimensions has the main advantage of reducing the number of variables involved in a problem, but the analytical expressions of the systems become more complicated. However, to minimize this disadvantage, an iterative method that does not explicitly depend on the analytical complexity of the system to be solved is used. A fractional iterative method, valid for one and several variables, that uses the properties of fractional calculus, in particular the fact that the fractional derivatives of constants are not always zero, to find solutions of nonlinear systems is presented.
The coefficients in a second order parabolic linear stochastic partial differential equation (SPDE) are estimated from multiple spatially localised measurements. Assuming that the spatial resolution tends to zero and the number of measurements is non-decreasing, the rate of convergence for each coefficient depends on its differential order and is faster for higher order coefficients. Based on an explicit analysis of the reproducing kernel Hilbert space of a general stochastic evolution equation, a Gaussian lower bound scheme is introduced. As a result, minimax optimality of the rates as well as sufficient and necessary conditions for consistent estimation are established.
The mathematical formulation of sign-changing problems involves a linear second-order partial differential equation in the divergence form, where the coefficient can assume positive and negative values in different subdomains. These problems find their physical background in negative-index metamaterials, either as inclusions embedded into common materials as the matrix or vice versa. In this paper, we propose a numerical method based on the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) specifically designed for sign-changing problems. The construction of auxiliary spaces in the original CEM-GMsFEM is tailored to accommodate the sign-changing setting. The numerical results demonstrate the effectiveness of the proposed method in handling sophisticated coefficient profiles and the robustness of coefficient contrast ratios. Under several technical assumptions and by applying the \texttt{T}-coercivity theory, we establish the inf-sup stability and provide an a priori error estimate for the proposed method.
A high-order numerical method is developed for solving the Cahn-Hilliard-Navier-Stokes equations with the Flory-Huggins potential. The scheme is based on the $Q_k$ finite element with mass lumping on rectangular grids, the second-order convex splitting method, and the pressure correction method. The unique solvability, unconditional stability, and bound-preserving properties are rigorously established. The key to bound-preservation is the discrete $L^1$ estimate of the singular potential. Ample numerical experiments are performed to validate the desired properties of the proposed numerical scheme.
We perform numerical investigation of nearly self-similar blowup of generalized axisymmetric Navier-Stokes equations and Boussinesq system with a time-dependent fractional dimension. The dynamic change of the space dimension is proportional to the ratio R(t)/Z(t), where (R(t),Z(t)) is the position at which the maximum vorticity achieves its global maximum. This choice of space dimension is to ensure that the advection along the r-direction has the same scaling as that along the z-direction, thus preventing formation of two-scale solution structure. For the generalized axisymmetric Navier-Stokes equations with solution dependent viscosity, we show that the solution develops a self-similar blowup with dimension equal to 3.188 and the self-similar profile satisfies the axisymmetric Navier-Stokes equations with constant viscosity. We also study the nearly self-similar blowup of the axisymmetric Boussinesq system with constant viscosity. The generalized axisymmetric Boussinesq system preserves almost all the known properties of the 3D Navier-Stokes equations except for the conservation of angular momentum. We present convincing numerical evidence that the generalized axisymmetric Boussinesq system develops a stable nearly self-similar blowup solution with maximum vorticity increased by O(10^{30}).
The maximal regularity property of discontinuous Galerkin methods for linear parabolic equations is used together with variational techniques to establish a priori and a posteriori error estimates of optimal order under optimal regularity assumptions. The analysis is set in the maximal regularity framework of UMD Banach spaces. Similar results were proved in an earlier work, based on the consistency analysis of Radau IIA methods. The present error analysis, which is based on variational techniques, is of independent interest, but the main motivation is that it extends to nonlinear parabolic equations; in contrast to the earlier work. Both autonomous and nonautonomous linear equations are considered.
The current study investigates the asymptotic spectral properties of a finite difference approximation of nonlocal Helmholtz equations with a Caputo fractional Laplacian and a variable coefficient wave number $\mu$, as it occurs when considering a wave propagation in complex media, characterized by nonlocal interactions and spatially varying wave speeds. More specifically, by using tools from Toeplitz and generalized locally Toeplitz theory, the present research delves into the spectral analysis of nonpreconditioned and preconditioned matrix-sequences. We report numerical evidences supporting the theoretical findings. Finally, open problems and potential extensions in various directions are presented and briefly discussed.
We present a new algorithm for solving linear-quadratic regulator (LQR) problems with linear equality constraints, also known as constrained LQR (CLQR) problems. Our method's sequential runtime is linear in the number of stages and constraints, and its parallel runtime is logarithmic in the number of stages. The main technical contribution of this paper is the derivation of parallelizable techniques for eliminating the linear equality constraints while preserving the standard positive (semi-)definiteness requirements of LQR problems.
The use of variable grid BDF methods for parabolic equations leads to structures that are called variable (coefficient) Toeplitz. Here, we consider a more general class of matrix-sequences and we prove that they belong to the maximal $*$-algebra of generalized locally Toeplitz (GLT) matrix-sequences. Then, we identify the associated GLT symbols in the general setting and in the specific case, by providing in both cases a spectral and singular value analysis. More specifically, we use the GLT tools in order to study the asymptotic behaviour of the eigenvalues and singular values of the considered BDF matrix-sequences, in connection with the given non-uniform grids. Numerical examples, visualizations, and open problems end the present work.