亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Serverless computing is an emerging cloud computing paradigm that enables developers to build applications at the function level, known as serverless applications. Amazon Web Services (AWS), the leading provider in this domain, provides the Serverless Application Model (AWS SAM), the most widely adopted configuration schema for configuring and managing serverless applications through a specified file. However, misconfigurations pose a significant challenge in serverless development. Traditional data-driven techniques may struggle with serverless applications because the complexity of serverless configurations hinders pattern recognition, and it is challenging to gather complete datasets that cover all possible configurations. Leveraging vast amounts of publicly available data during pre-training, LLMs can have the potential to assist in identifying and explaining misconfigurations in serverless applications. In this paper, we introduce SlsDetector, the first framework leveraging LLMs to detect misconfigurations in serverless applications. SlsDetector utilizes effective prompt engineering with zero-shot learning to identify configuration issues. It designs multi-dimensional constraints specifically tailored to the configuration characteristics of serverless applications and leverages the Chain of Thought technique to enhance LLMs inferences. We evaluate SlsDetector on a curated dataset of 110 configuration files. Our results show that SlsDetector, based on ChatGPT-4o, achieves a precision of 72.88%, recall of 88.18%, and F1-score of 79.75%, outperforming state-of-the-art data-driven approaches by 53.82, 17.40, and 49.72 percentage points, respectively. Furthermore, we investigate the generalization capability of SlsDetector by applying recent LLMs, including Llama 3.1 (405B) Instruct Turbo and Gemini 1.5 Pro, with results showing consistently high effectiveness across these models.

相關內容

由亞馬遜云平臺提供的一種信息服務。

Glyph-based visualization is one of the main techniques for visualizing complex multivariate data. With small glyphs, data variables are typically encoded with relatively low visual and perceptual precision. Glyph designers have to contemplate the trade-offs in allocating visual channels when there is a large number of data variables. While there are many successful glyph designs in the literature, there is not yet a systematic method for assisting visualization designers to evaluate different design options that feature different types of trade-offs. In this paper, we present an evaluation scheme based on the multi-criteria decision analysis (MCDA) methodology. The scheme provides designers with a structured way to consider their glyph designs from a range of perspectives, while rendering a semi-quantitative template for evaluating different design options. In addition, this work provides guideposts for future empirical research to obtain more quantitative measurements that can be used in MCDA-aided glyph design processes.

Graphical user interface (GUI) prototyping represents an essential activity in the development of interactive systems, which are omnipresent today. GUI prototypes facilitate elicitation of requirements and help to test, evaluate, and validate ideas with users and the development team. However, creating GUI prototypes is a time-consuming process and often requires extensive resources. While existing research for automatic GUI generation focused largely on resource-intensive training and fine-tuning of LLMs, mainly for low-fidelity GUIs, we investigate the potential and effectiveness of Zero-Shot (ZS) prompting for high-fidelity GUI generation. We propose a Retrieval-Augmented GUI Generation (RAGG) approach, integrated with an LLM-based GUI retrieval re-ranking and filtering mechanism based on a large-scale GUI repository. In addition, we adapt Prompt Decomposition (PDGG) and Self-Critique (SCGG) for GUI generation. To evaluate the effectiveness of the proposed ZS prompting approaches for GUI generation, we extensively evaluated the accuracy and subjective satisfaction of the generated GUI prototypes. Our evaluation, which encompasses over 3,000 GUI annotations from over 100 crowd-workers with UI/UX experience, shows that SCGG, in contrast to PDGG and RAGG, can lead to more effective GUI generation, and provides valuable insights into the defects that are produced by the LLMs in the generated GUI prototypes.

Dataset distillation offers an efficient way to reduce memory and computational costs by optimizing a smaller dataset with performance comparable to the full-scale original. However, for large datasets and complex deep networks (e.g., ImageNet-1K with ResNet-101), the extensive optimization space limits performance, reducing its practicality. Recent approaches employ pre-trained diffusion models to generate informative images directly, avoiding pixel-level optimization and achieving notable results. However, these methods often face challenges due to distribution shifts between pre-trained models and target datasets, along with the need for multiple distillation steps across varying settings. To address these issues, we propose a novel framework orthogonal to existing diffusion-based distillation methods, leveraging diffusion models for selection rather than generation. Our method starts by predicting noise generated by the diffusion model based on input images and text prompts (with or without label text), then calculates the corresponding loss for each pair. With the loss differences, we identify distinctive regions of the original images. Additionally, we perform intra-class clustering and ranking on selected patches to maintain diversity constraints. This streamlined framework enables a single-step distillation process, and extensive experiments demonstrate that our approach outperforms state-of-the-art methods across various metrics.

Binary code analysis and comprehension is critical to applications in reverse engineering and computer security tasks where source code is not available. Unfortunately, unlike source code, binary code lacks semantics and is more difficult for human engineers to understand and analyze. In this paper, we present ContraBin, a contrastive learning technique that integrates source code and comment information along with binaries to create an embedding capable of aiding binary analysis and comprehension tasks. Specifically, we present three components in ContraBin: (1) a primary contrastive learning method for initial pre-training, (2) a simplex interpolation method to integrate source code, comments, and binary code, and (3) an intermediate representation learning algorithm to train a binary code embedding. We further analyze the impact of human-written and synthetic comments on binary code comprehension tasks, revealing a significant performance disparity. While synthetic comments provide substantial benefits, human-written comments are found to introduce noise, even resulting in performance drops compared to using no comments. These findings reshape the narrative around the role of comment types in binary code analysis. We evaluate the effectiveness of ContraBin through four indicative downstream tasks related to binary code: algorithmic functionality classification, function name recovery, code summarization, and reverse engineering. The results show that ContraBin considerably improves performance on all four tasks, measured by accuracy, mean of average precision, and BLEU scores as appropriate. ContraBin is the first language representation model to incorporate source code, binary code, and comments into contrastive code representation learning and is intended to contribute to the field of binary code analysis. The dataset used in this study is available for further research.

Quadratic programming (QP) forms a crucial foundation in optimization, encompassing a broad spectrum of domains and serving as the basis for more advanced algorithms. Consequently, as the scale and complexity of modern applications continue to grow, the development of efficient and reliable QP algorithms is becoming increasingly vital. In this context, this paper introduces a novel deep learning-aided distributed optimization architecture designed for tackling large-scale QP problems. First, we combine the state-of-the-art Operator Splitting QP (OSQP) method with a consensus approach to derive DistributedQP, a new method tailored for network-structured problems, with convergence guarantees to optimality. Subsequently, we unfold this optimizer into a deep learning framework, leading to DeepDistributedQP, which leverages learned policies to accelerate reaching to desired accuracy within a restricted amount of iterations. Our approach is also theoretically grounded through Probably Approximately Correct (PAC)-Bayes theory, providing generalization bounds on the expected optimality gap for unseen problems. The proposed framework, as well as its centralized version DeepQP, significantly outperform their standard optimization counterparts on a variety of tasks such as randomly generated problems, optimal control, linear regression, transportation networks and others. Notably, DeepDistributedQP demonstrates strong generalization by training on small problems and scaling to solve much larger ones (up to 50K variables and 150K constraints) using the same policy. Moreover, it achieves orders-of-magnitude improvements in wall-clock time compared to OSQP. The certifiable performance guarantees of our approach are also demonstrated, ensuring higher-quality solutions over traditional optimizers.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

The task of detecting 3D objects in point cloud has a pivotal role in many real-world applications. However, 3D object detection performance is behind that of 2D object detection due to the lack of powerful 3D feature extraction methods. In order to address this issue, we propose to build a 3D backbone network to learn rich 3D feature maps by using sparse 3D CNN operations for 3D object detection in point cloud. The 3D backbone network can inherently learn 3D features from almost raw data without compressing point cloud into multiple 2D images and generate rich feature maps for object detection. The sparse 3D CNN takes full advantages of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network achievable. Empirical experiments are conducted on the KITTI benchmark and results show that the proposed method can achieve state-of-the-art performance for 3D object detection.

北京阿比特科技有限公司