亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Data analytics using GUI-based workflows is an iterative process in which an analyst makes many iterations of changes to refine the workflow, generating a different version at each iteration. In many cases, the result of executing a workflow version is equivalent to a result of a prior executed version. Identifying such equivalence between the execution results of different workflow versions is important for optimizing the performance of a workflow by reusing results from a previous run. The size of the workflows and the complexity of their operators often make existing equivalence verifiers (EVs) not able to solve the problem. In this paper, we present "Veer," which leverages the fact that two workflow versions can be very similar except for a few changes. The solution divides the workflow version pair into small parts, called windows, and verifies the equivalence within each window by using an existing EV as a black box. We develop solutions to efficiently generate windows and verify the equivalence within each window. Our thorough experiments on real workflows show that Veer is able to not only verify the equivalence of workflows that cannot be supported by existing EVs but also do the verification efficiently.

相關內容

 Microsoft Windows(視窗操作系統)是微軟公司推出的一系列操作系統。它問世于1985年,當時是DOS之下的操作環境,而后其后續版本作逐漸發展成為個人電腦和服務器用戶設計的操作系統。

Integrating adversarial machine learning with Question Answering (QA) systems has emerged as a critical area for understanding the vulnerabilities and robustness of these systems. This article aims to comprehensively review adversarial example-generation techniques in the QA field, including textual and multimodal contexts. We examine the techniques employed through systematic categorization, providing a comprehensive, structured review. Beginning with an overview of traditional QA models, we traverse the adversarial example generation by exploring rule-based perturbations and advanced generative models. We then extend our research to include multimodal QA systems, analyze them across various methods, and examine generative models, seq2seq architectures, and hybrid methodologies. Our research grows to different defense strategies, adversarial datasets, and evaluation metrics and illustrates the comprehensive literature on adversarial QA. Finally, the paper considers the future landscape of adversarial question generation, highlighting potential research directions that can advance textual and multimodal QA systems in the context of adversarial challenges.

Increased focus on the computational efficiency of NLP systems has motivated the design of efficient model architectures and improvements to underlying hardware accelerators. However, the resulting increases in computational throughput and reductions in floating point operations have not directly translated to improvements in wall-clock inference latency. We demonstrate that these discrepancies can be largely attributed to bottlenecks introduced by deep learning frameworks. We denote this phenomenon as the \textit{framework tax}, and observe that the disparity is growing as hardware speed increases over time. In this work, we examine this phenomenon through a series of case studies analyzing the effects of model design decisions, framework paradigms, and hardware platforms on total model latency. Code is available at //github.com/JaredFern/Framework-Tax.

Although event logs are a powerful source to gain insight about the behavior of the underlying business process, existing work primarily focuses on finding patterns in the activity sequences of an event log, while ignoring event attribute data. Event attribute data has mostly been used to predict event occurrences and process outcome, but the state of the art neglects to mine succinct and interpretable rules how event attribute data changes during process execution. Subgroup discovery and rule-based classification approaches lack the ability to capture the sequential dependencies present in event logs, and thus lead to unsatisfactory results with limited insight into the process behavior. Given an event log, we are interested in finding accurate yet succinct and interpretable if-then rules how the process modifies data. We formalize the problem in terms of the Minimum Description Length (MDL) principle, by which we choose the model with the best lossless description of the data. Additionally, we propose the greedy Moody algorithm to efficiently search for rules. By extensive experiments on both synthetic and real-world data, we show Moody indeed finds compact and interpretable rules, needs little data for accurate discovery, and is robust to noise.

In this work, we propose REBEL, an algorithm for sample efficient reward regularization based robotic reinforcement learning from human feedback (RRLHF). Reinforcement learning (RL) performance for continuous control robotics tasks is sensitive to the underlying reward function. In practice, the reward function often ends up misaligned with human intent, values, social norms, etc., leading to catastrophic failures in the real world. We leverage human preferences to learn regularized reward functions and eventually align the agents with the true intended behavior. We introduce a novel notion of reward regularization to the existing RRLHF framework, which is termed as agent preferences. So, we not only consider human feedback in terms of preferences, we also propose to take into account the preference of the underlying RL agent while learning the reward function. We show that this helps to improve the over-optimization associated with the design of reward functions in RL. We experimentally show that REBEL exhibits up to 70% improvement in sample efficiency to achieve a similar level of episodic reward returns as compared to the state-of-the-art methods such as PEBBLE and PEBBLE+SURF.

Machine learning models are being used in an increasing number of critical applications; thus, securing their integrity and ownership is critical. Recent studies observed that adversarial training and watermarking have a conflicting interaction. This work introduces a novel framework to integrate adversarial training with watermarking techniques to fortify against evasion attacks and provide confident model verification in case of intellectual property theft. We use adversarial training together with adversarial watermarks to train a robust watermarked model. The key intuition is to use a higher perturbation budget to generate adversarial watermarks compared to the budget used for adversarial training, thus avoiding conflict. We use the MNIST and Fashion-MNIST datasets to evaluate our proposed technique on various model stealing attacks. The results obtained consistently outperform the existing baseline in terms of robustness performance and further prove the resilience of this defense against pruning and fine-tuning removal attacks.

Recent work demonstrates that, after being fine-tuned on a high-quality instruction dataset, the resulting model can obtain impressive capabilities to address a wide range of tasks. However, existing methods for instruction data generation often produce duplicate data and are not controllable enough on data quality. In this paper, we extend the generalization of instruction tuning by classifying the instruction data to 4 code-related tasks and propose a LLM-based Generator-Discriminator data process framework to generate diverse, high-quality instruction data from open source code. Hence, we introduce CodeOcean, a dataset comprising 20,000 instruction instances across 4 universal code-related tasks,which is aimed at augmenting the effectiveness of instruction tuning and improving the generalization ability of fine-tuned model. Subsequently, we present WaveCoder, a fine-tuned Code LLM with Widespread And Versatile Enhanced instruction tuning. This model is specifically designed for enhancing instruction tuning of Code Language Models (LLMs). Our experiments demonstrate that Wavecoder models outperform other open-source models in terms of generalization ability across different code-related tasks at the same level of fine-tuning scale. Moreover, Wavecoder exhibits high efficiency in previous code generation tasks. This paper thus offers a significant contribution to the field of instruction data generation and fine-tuning models, providing new insights and tools for enhancing performance in code-related tasks.

Graph clustering, which aims to divide the nodes in the graph into several distinct clusters, is a fundamental and challenging task. In recent years, deep graph clustering methods have been increasingly proposed and achieved promising performance. However, the corresponding survey paper is scarce and it is imminent to make a summary in this field. From this motivation, this paper makes the first comprehensive survey of deep graph clustering. Firstly, the detailed definition of deep graph clustering and the important baseline methods are introduced. Besides, the taxonomy of deep graph clustering methods is proposed based on four different criteria including graph type, network architecture, learning paradigm, and clustering method. In addition, through the careful analysis of the existing works, the challenges and opportunities from five perspectives are summarized. At last, the applications of deep graph clustering in four domains are presented. It is worth mentioning that a collection of state-of-the-art deep graph clustering methods including papers, codes, and datasets is available on GitHub. We hope this work will serve as a quick guide and help researchers to overcome challenges in this vibrant field.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design computer agents with intelligent capabilities such as understanding, reasoning, and learning through integrating multiple communicative modalities, including linguistic, acoustic, visual, tactile, and physiological messages. With the recent interest in video understanding, embodied autonomous agents, text-to-image generation, and multisensor fusion in application domains such as healthcare and robotics, multimodal machine learning has brought unique computational and theoretical challenges to the machine learning community given the heterogeneity of data sources and the interconnections often found between modalities. However, the breadth of progress in multimodal research has made it difficult to identify the common themes and open questions in the field. By synthesizing a broad range of application domains and theoretical frameworks from both historical and recent perspectives, this paper is designed to provide an overview of the computational and theoretical foundations of multimodal machine learning. We start by defining two key principles of modality heterogeneity and interconnections that have driven subsequent innovations, and propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification covering historical and recent trends. Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches. We end by motivating several open problems for future research as identified by our taxonomy.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

北京阿比特科技有限公司