亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose and analyze a temporally second-order accurate, fully discrete finite element method for the magnetohydrodynamic (MHD) equations. A modified Crank--Nicolson method is used to discretize the model and appropriate semi-implicit treatments are applied to the fluid convection term and two coupling terms. These semi-implicit approximations result in a linear system with variable coefficients for which the unique solvability can be proved theoretically. In addition, we use a decoupling projection method of the Van Kan type \cite{vankan1986} in the Stokes solver, which computes the intermediate velocity field based on the gradient of the pressure from the previous time level, and enforces the incompressibility constraint via the Helmholtz decomposition of the intermediate velocity field. The energy stability of the scheme is theoretically proved, in which the decoupled Stokes solver needs to be analyzed in details. Optimal-order convergence of $\mathcal{O} (\tau^2+h^{r+1})$ in the discrete $L^\infty(0,T;L^2)$ norm is proved for the proposed decoupled projection finite element scheme, where $\tau$ and $h$ are the time stepsize and spatial mesh size, respectively, and $r$ is the degree of the finite elements. Existing error estimates of second-order projection methods of the Van Kan type \cite{vankan1986} were only established in the discrete $L^2(0,T;L^2)$ norm for the Navier--Stokes equations. Numerical examples are provided to illustrate the theoretical results.

相關內容

A novel discretization is presented for forward-backward stochastic differential equations (FBSDE) with differentiable coefficients, simultaneously solving the BSDE and its Malliavin sensitivity problem. The control process is estimated by the corresponding linear BSDE driving the trajectories of the Malliavin derivatives of the solution pair, which implies the need to provide accurate $\Gamma$ estimates. The approximation is based on a merged formulation given by the Feynman-Kac formulae and the Malliavin chain rule. The continuous time dynamics is discretized with a theta-scheme. In order to allow for an efficient numerical solution of the arising semi-discrete conditional expectations in possibly high-dimensions, it is fundamental that the chosen approach admits to differentiable estimates. Two fully-implementable schemes are considered: the BCOS method as a reference in the one-dimensional framework and neural network Monte Carlo regressions in case of high-dimensional problems, similarly to the recently emerging class of Deep BSDE methods [Han et al. (2018), Hur\'e et al. (2020)]. An error analysis is carried out to show $L^2$ convergence of order $1/2$, under standard Lipschitz assumptions and additive noise in the forward diffusion. Numerical experiments are provided for a range of different semi- and quasi-linear equations up to $50$ dimensions, demonstrating that the proposed scheme yields a significant improvement in the control estimations.

We present a new enriched Galerkin (EG) scheme for the Stokes equations based on piecewise linear elements for the velocity unknowns and piecewise constant elements for the pressure. The proposed EG method augments the conforming piecewise linear space for velocity by adding an additional degree of freedom which corresponds to one discontinuous linear basis function per element. Thus, the total number of degrees of freedom is significantly reduced in comparison with standard conforming, non-conforming, and discontinuous Galerkin schemes for the Stokes equation. We show the well-posedness of the new EG approach and prove that the scheme converges optimally. For the solution of the resulting large-scale indefinite linear systems we propose robust block preconditioners, yielding scalable results independent of the discretization and physical parameters. Numerical results confirm the convergence rates of the discretization and also the robustness of the linear solvers for a variety of test problems.

One- and multi-dimensional stochastic Maxwell equations with additive noise are considered in this paper. It is known that such system can be written in the multi-symplectic structure, and the stochastic energy increases linearly in time. High order discontinuous Galerkin methods are designed for the stochastic Maxwell equations with additive noise, and we show that the proposed methods satisfy the discrete form of the stochastic energy linear growth property and preserve the multi-symplectic structure on the discrete level. Optimal error estimate of the semi-discrete DG method is also analyzed. The fully discrete methods are obtained by coupling with symplectic temporal discretizations. One- and two-dimensional numerical results are provided to demonstrate the performance of the proposed methods, and optimal error estimates and linear growth of the discrete energy can be observed for all cases.

We study a numerical approximation for a nonlinear variable-order fractional differential equation via an integral equation method. Due to the lack of the monotonicity of the discretization coefficients of the variable-order fractional derivative in standard approximation schemes, existing numerical analysis techniques do not apply directly. By an approximate inversion technique, the proposed model is transformed as a second kind Volterra integral equation, based on which a collocation method under uniform or graded mesh is developed and analyzed. In particular, the error estimates improve the existing results by proving a consistent and sharper mesh grading parameter and characterizing the convergence rates in terms of the initial value of the variable order, which demonstrates its critical role in determining the smoothness of the solutions and thus the numerical accuracy.

We provide a control-theoretic perspective on optimal tensor algorithms for minimizing a convex function in a finite-dimensional Euclidean space. Given a function $\Phi: \mathbb{R}^d \rightarrow \mathbb{R}$ that is convex and twice continuously differentiable, we study a closed-loop control system that is governed by the operators $\nabla \Phi$ and $\nabla^2 \Phi$ together with a feedback control law $\lambda(\cdot)$ satisfying the algebraic equation $(\lambda(t))^p\|\nabla\Phi(x(t))\|^{p-1} = \theta$ for some $\theta \in (0, 1)$. Our first contribution is to prove the existence and uniqueness of a local solution to this system via the Banach fixed-point theorem. We present a simple yet nontrivial Lyapunov function that allows us to establish the existence and uniqueness of a global solution under certain regularity conditions and analyze the convergence properties of trajectories. The rate of convergence is $O(1/t^{(3p+1)/2})$ in terms of objective function gap and $O(1/t^{3p})$ in terms of squared gradient norm. Our second contribution is to provide two algorithmic frameworks obtained from discretization of our continuous-time system, one of which generalizes the large-step A-HPE framework and the other of which leads to a new optimal $p$-th order tensor algorithm. While our discrete-time analysis can be seen as a simplification and generalization of~\citet{Monteiro-2013-Accelerated}, it is largely motivated by the aforementioned continuous-time analysis, demonstrating the fundamental role that the feedback control plays in optimal acceleration and the clear advantage that the continuous-time perspective brings to algorithmic design. A highlight of our analysis is that we show that all of the $p$-th order optimal tensor algorithms that we discuss minimize the squared gradient norm at a rate of $O(k^{-3p})$, which complements the recent analysis.

We extend the DeTurck trick from the classical isotropic curve shortening flow to the anisotropic setting. Here the anisotropic energy density is allowed to depend on space, which allows an interpretation in the context of Finsler metrics, giving rise to e.g.\ geodesic curvature flow in Riemannian manifolds. Assuming that the density is strictly convex and smooth, we introduce a novel weak formulation for anisotropic curve shortening flow. We then derive an optimal $H^1$--error bound for a continuous-in-time semidiscrete finite element approximation that uses piecewise linear elements. In addition, we consider some fully practical fully discrete schemes and prove their unconditional stability. Finally, we present several numerical simulations, including some convergence experiments that confirm the derived error bound, as well as applications to crystalline curvature flow and geodesic curvature flow.

We design an adaptive unfitted finite element method on the Cartesian mesh with hanging nodes. We derive an hp-reliable and efficient residual type a posteriori error estimate on K-meshes. A key ingredient is a novel hp-domain inverse estimate which allows us to prove the stability of the finite element method under practical interface resolving mesh conditions and also prove the lower bound of the hp a posteriori error estimate. Numerical examples are included.

Training neural networks with binary weights and activations is a challenging problem due to the lack of gradients and difficulty of optimization over discrete weights. Many successful experimental results have been achieved with empirical straight-through (ST) approaches, proposing a variety of ad-hoc rules for propagating gradients through non-differentiable activations and updating discrete weights. At the same time, ST methods can be truly derived as estimators in the stochastic binary network (SBN) model with Bernoulli weights. We advance these derivations to a more complete and systematic study. We analyze properties, estimation accuracy, obtain different forms of correct ST estimators for activations and weights, explain existing empirical approaches and their shortcomings, explain how latent weights arise from the mirror descent method when optimizing over probabilities. This allows to reintroduce ST methods, long known empirically, as sound approximations, apply them with clarity and develop further improvements.

We present an energy-preserving mechanic formulation for dynamic quasi-brittle fracture in an Eulerian-Lagrangian formulation, where a second-order phase-field equation controls the damage evolution. The numerical formulation adapts in space and time to bound the errors, solving the mesh-bias issues these models typically suffer. The time-step adaptivity estimates the temporal truncation error of the partial differential equation that governs the solid equilibrium. The second-order generalized-$\alpha$ time-marching scheme evolves the dynamic system. We estimate the temporal error by extrapolating a first-order approximation of the present time-step solution using previous ones with backward difference formulas; the estimate compares the extrapolation with the time-marching solution. We use an adaptive scheme built on a residual minimization formulation in space. We estimate the spatial error by enriching the discretization with elemental bubbles; then, we localize an error indicator norm to guide the mesh refinement as the fracture propagates. The combined space and time adaptivity allows us to use low-order linear elements in problems involving complex stress paths. We efficiently and robustly use low-order spatial discretizations while avoiding mesh bias in structured and unstructured meshes. We demonstrate the method's efficiency with numerical experiments that feature dynamic crack branching, where the capacity of the adaptive space-time scheme is apparent. The adaptive method delivers accurate and reproducible crack paths on meshes with fewer elements.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

北京阿比特科技有限公司