亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Blockchain has been widely deployed in various sectors, such as finance, education, and public services. Since blockchain runs as an immutable distributed ledger, it has decentralized mechanisms with persistency, anonymity, and auditability, where transactions are jointly performed through cryptocurrency-based consensus algorithms by worldwide distributed nodes. There have been many survey papers reviewing the blockchain technologies from different perspectives, e.g., digital currencies, consensus algorithms, and smart contracts. However, none of them have focused on the blockchain data management systems. To fill in this gap, we have conducted a comprehensive survey on the data management systems, based on three typical types of blockchain, i.e., standard blockchain, hybrid blockchain, and DAG (Directed Acyclic Graph)-based blockchain. We categorize their data management mechanisms into three layers: blockchain architecture, blockchain data structure, and blockchain storage engine, where block architecture indicates how to record transactions on a distributed ledger, blockchain data structure refers to the internal structure of each block, and blockchain storage engine specifies the storage form of data on the blockchain system. For each layer, the works advancing the state-of-the-art are discussed together with technical challenges. Furthermore, we lay out the future research directions for the blockchain data management systems.

相關內容

區(qu)塊(kuai)鏈(Blockchain)是(shi)由節(jie)點參與的(de)分布式(shi)數據庫系統,它的(de)特點是(shi)不(bu)可更改,不(bu)可偽造,也可以將其(qi)理(li)解為賬簿系統(ledger)。它是(shi)比特幣(bi)的(de)一個(ge)重(zhong)要概念,完整比特幣(bi)區(qu)塊(kuai)鏈的(de)副(fu)本,記錄(lu)了(le)其(qi)代(dai)幣(bi)(token)的(de)每(mei)(mei)一筆(bi)交(jiao)易。通過這些信息,我們可以找(zhao)到每(mei)(mei)一個(ge)地址,在歷(li)史上任何一點所(suo)擁有的(de)價值。

知識薈萃

精品入門和(he)進(jin)階教(jiao)程、論(lun)文和(he)代(dai)碼(ma)整(zheng)理等

更多

查看(kan)相關VIP內(nei)容、論文、資訊等

Future Tele-operated Driving (ToD) applications place challenging Quality of Service (QoS) demands on existing mobile communication networks that are of highly important to comply with for safe operation. New remote control and platooning services will emerge and pose high data rate and latency requirements. One key enabler for these applications is the newly available 5G New Radio (NR) promising higher bandwidth and lower latency than its predecessors. In addition to that, public 5G networks do not consistently deliver and do not guarantee the required data rates and latency of ToD. In this paper, we discuss the communication-related requirements of tele-operated driving. ToD is regarded as a complex system consisting of multiple research areas. One key aspect of ToD is the provision and maintenance of the required data rate for teleoperation by the mobile network. An in-advance prediction method of the end-to-end data rate based on so-called Radio Environmental Maps (REMs) is discussed. Furthermore, a novel approach improving the prediction accuracy is introduced and it features individually optimized REM layers. Finally, we analyze the implementation of tele-operated driving applications on a scaled vehicular platform combined with a cyber-physical test environment consisting of real and virtual objects. This approach enables large-scale testing of remote operation and autonomous applications.

The 5G wireless networks are potentially revolutionizing future technologies. The 5G technologies are expected to foresee demands of diverse vertical applications with diverse requirements including high traffic volume, massive connectivity, high quality of service, and low latency. To fulfill such requirements in 5G and beyond, new emerging technologies such as SDN, NFV, MEC, and CC are being deployed. However, these technologies raise several issues regarding transparency, decentralization, and reliability. Furthermore, 5G networks are expected to connect many heterogeneous devices and machines which will raise several security concerns regarding users' confidentiality, data privacy, and trustworthiness. To work seamlessly and securely in such scenarios, future 5G networks need to deploy smarter and more efficient security functions. Motivated by the aforementioned issues, blockchain was proposed by researchers to overcome 5G issues because of its capacities to ensure transparency, data reliability, trustworthiness, immutability in a distributed environment. Indeed, blockchain has gained momentum as a novel technology that gives rise to a plethora of new decentralized technologies. In this chapter, we discuss the integration of the blockchain with 5G networks and beyond. We then present how blockchain applications in 5G networks and beyond could facilitate enabling various services at the edge and the core.

Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold start. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the abovementioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field and summarize them from two perspectives. On the one hand, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. On the other hand, we introduce datasets used in these works. Finally, we propose several potential research directions in this field.

The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.

Driven by the visions of Internet of Things and 5G communications, the edge computing systems integrate computing, storage and network resources at the edge of the network to provide computing infrastructure, enabling developers to quickly develop and deploy edge applications. Nowadays the edge computing systems have received widespread attention in both industry and academia. To explore new research opportunities and assist users in selecting suitable edge computing systems for specific applications, this survey paper provides a comprehensive overview of the existing edge computing systems and introduces representative projects. A comparison of open source tools is presented according to their applicability. Finally, we highlight energy efficiency and deep learning optimization of edge computing systems. Open issues for analyzing and designing an edge computing system are also studied in this survey.

Nowadays, recommender systems are present in many daily activities such as online shopping, browsing social networks, etc. Given the rising demand for reinvigoration of the tourist industry through information technology, recommenders have been included into tourism websites such as Expedia, Booking or Tripadvisor, among others. Furthermore, the amount of scientific papers related to recommender systems for tourism is on solid and continuous growth since 2004. Much of this growth is due to social networks that, besides to offer researchers the possibility of using a great mass of available and constantly updated data, they also enable the recommendation systems to become more personalised, effective and natural. This paper reviews and analyses many research publications focusing on tourism recommender systems that use social networks in their projects. We detail their main characteristics, like which social networks are exploited, which data is extracted, the applied recommendation techniques, the methods of evaluation, etc. Through a comprehensive literature review, we aim to collaborate with the future recommender systems, by giving some clear classifications and descriptions of the current tourism recommender systems.

The field of Multi-Agent System (MAS) is an active area of research within Artificial Intelligence, with an increasingly important impact in industrial and other real-world applications. Within a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent agent architectures to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have enabled them to support MAS in complex, real-time, and uncertain environments. This survey aims at providing an overview of the DCOP model, giving a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions, and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.

北京阿比特科技有限公司