亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In many machine learning applications where massive and privacy-sensitive data are generated on numerous mobile or IoT devices, collecting data in a centralized location may be prohibitive. Thus, it is increasingly attractive to estimate parameters over mobile or IoT devices while keeping data localized. Such learning setting is known as cross-device federated learning. In this paper, we propose the first theoretically guaranteed algorithms for general minimax problems in the cross-device federated learning setting. Our algorithms require only a fraction of devices in each round of training, which overcomes the difficulty introduced by the low availability of devices. The communication overhead is further reduced by performing multiple local update steps on clients before communication with the server, and global gradient estimates are leveraged to correct the bias in local update directions introduced by data heterogeneity. By developing analyses based on novel potential functions, we establish theoretical convergence guarantees for our algorithms. Experimental results on AUC maximization, robust adversarial network training, and GAN training tasks demonstrate the efficiency of our algorithms.

相關內容

聯邦學習(Federated Learning)是一種新興的人工智能基礎技術,在 2016 年由谷歌最先提出,原本用于解決安卓手機終端用戶在本地更新模型的問題,其設計目標是在保障大數據交換時的信息安全、保護終端數據和個人數據隱私、保證合法合規的前提下,在多參與方或多計算結點之間開展高效率的機器學習。其中,聯邦學習可使用的機器學習算法不局限于神經網絡,還包括隨機森林等重要算法。聯邦學習有望成為下一代人工智能協同算法和協作網絡的基礎。

We study the federated optimization problem from a dual perspective and propose a new algorithm termed federated dual coordinate descent (FedDCD), which is based on a type of coordinate descent method developed by Necora et al.[Journal of Optimization Theory and Applications, 2017]. Additionally, we enhance the FedDCD method with inexact gradient oracles and Nesterov's acceleration. We demonstrate theoretically that our proposed approach achieves better convergence rates than the state-of-the-art primal federated optimization algorithms under certain situations. Numerical experiments on real-world datasets support our analysis.

In this paper, we study the challenging task of Byzantine-robust decentralized training on arbitrary communication graphs. Unlike federated learning where workers communicate through a server, workers in the decentralized environment can only talk to their neighbors, making it harder to reach consensus. We identify a novel dissensus attack in which few malicious nodes can take advantage of information bottlenecks in the topology to poison the collaboration. To address these issues, we propose a Self-Centered Clipping (SCClip) algorithm for Byzantine-robust consensus and optimization, which is the first to provably converge to a $O(\delta_{\max}\zeta^2/\gamma^2)$ neighborhood of the stationary point for non-convex objectives under standard assumptions. Finally, we demonstrate the encouraging empirical performance of SCClip under a large number of attacks.

Federated Learning (FL) is a distributed learning paradigm that enables a large number of resource-limited nodes to collaboratively train a model without data sharing. The non-independent-and-identically-distributed (non-i.i.d.) data samples invoke discrepancies between the global and local objectives, making the FL model slow to converge. In this paper, we proposed Optimal Aggregation algorithm for better aggregation, which finds out the optimal subset of local updates of participating nodes in each global round, by identifying and excluding the adverse local updates via checking the relationship between the local gradient and the global gradient. Then, we proposed a Probabilistic Node Selection framework (FedPNS) to dynamically change the probability for each node to be selected based on the output of Optimal Aggregation. FedPNS can preferentially select nodes that propel faster model convergence. The unbiasedness of the proposed FedPNS design is illustrated and the convergence rate improvement of FedPNS over the commonly adopted Federated Averaging (FedAvg) algorithm is analyzed theoretically. Experimental results demonstrate the effectiveness of FedPNS in accelerating the FL convergence rate, as compared to FedAvg with random node selection.

Fueled by advances in distributed deep learning (DDL), recent years have witnessed a rapidly growing demand for resource-intensive distributed/parallel computing to process DDL computing jobs. To resolve network communication bottleneck and load balancing issues in distributed computing, the so-called ``ring-all-reduce'' decentralized architecture has been increasingly adopted to remove the need for dedicated parameter servers. To date, however, there remains a lack of theoretical understanding on how to design resource optimization algorithms for efficiently scheduling ring-all-reduce DDL jobs in computing clusters. This motivates us to fill this gap by proposing a series of new resource scheduling designs for ring-all-reduce DDL jobs. Our contributions in this paper are three-fold: i) We propose a new resource scheduling analytical model for ring-all-reduce deep learning, which covers a wide range of objectives in DDL performance optimization (e.g., excessive training avoidance, energy efficiency, fairness); ii) Based on the proposed performance analytical model, we develop an efficient resource scheduling algorithm called GADGET (greedy ring-all-reduce distributed graph embedding technique), which enjoys a provable strong performance guarantee; iii) We conduct extensive trace-driven experiments to demonstrate the effectiveness of the GADGET approach and its superiority over the state of the art.

Contextual bandit algorithms have been recently studied under the federated learning setting to satisfy the demand of keeping data decentralized and pushing the learning of bandit models to the client side. But limited by the required communication efficiency, existing solutions are restricted to linear models to exploit their closed-form solutions for parameter estimation. Such a restricted model choice greatly hampers these algorithms' practical utility. In this paper, we take the first step to addressing this challenge by studying generalized linear bandit models under a federated learning setting. We propose a communication-efficient solution framework that employs online regression for local update and offline regression for global update. We rigorously proved that, though the setting is more general and challenging, our algorithm can attain sub-linear rate in both regret and communication cost, which is also validated by our extensive empirical evaluations.

There has been a surge of interest in continual learning and federated learning, both of which are important in deep neural networks in real-world scenarios. Yet little research has been done regarding the scenario where each client learns on a sequence of tasks from a private local data stream. This problem of federated continual learning poses new challenges to continual learning, such as utilizing knowledge from other clients, while preventing interference from irrelevant knowledge. To resolve these issues, we propose a novel federated continual learning framework, Federated Weighted Inter-client Transfer (FedWeIT), which decomposes the network weights into global federated parameters and sparse task-specific parameters, and each client receives selective knowledge from other clients by taking a weighted combination of their task-specific parameters. FedWeIT minimizes interference between incompatible tasks, and also allows positive knowledge transfer across clients during learning. We validate our \emph{FedWeIT}~against existing federated learning and continual learning methods under varying degrees of task similarity across clients, and our model significantly outperforms them with a large reduction in the communication cost.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司