亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While reachability analysis is one of the most promising approaches for the formal verification of dynamic systems, a major disadvantage preventing a more widespread application is the requirement to manually tune algorithm parameters such as the time step size. Manual tuning is especially problematic if one aims to verify that the system satisfies complicated specifications described by signal temporal logic formulas since the effect the tightness of the reachable set has on the satisfaction of the specification is often non-trivial to see for humans. We address this problem with a fully-automated verifier for linear systems, which automatically refines all parameters for reachability analysis until it can either prove or disprove that the system satisfies a signal temporal logic formula for all initial states and all uncertain inputs. Our verifier combines reachset temporal logic with dependency preservation to obtain a model checking approach whose over-approximation error converges to zero for adequately tuned parameters. While we in this work focus on linear systems for simplicity, the general concept we present can equivalently be applied for nonlinear and hybrid systems.

相關內容

In this paper, we investigate the problem of controlling multiple unmanned aerial vehicles (UAVs) to enclose a moving target in a distributed fashion based on a relative distance and self-displacement measurements. A relative localization technique is developed based on the recursive least square estimation (RLSE) technique with a forgetting factor to estimates both the ``UAV-UAV'' and ``UAV-target'' relative positions. The formation enclosing motion is planned using a coupled oscillator model, which generates desired motion for UAVs to distribute evenly on a circle. The coupled-oscillator-based motion can also facilitate the exponential convergence of relative localization due to its persistent excitation nature. Based on the generation strategy of desired formation pattern and relative localization estimates, a cooperative formation tracking control scheme is proposed, which enables the formation geometric center to asymptotically converge to the moving target. The asymptotic convergence performance is analyzed theoretically for both the relative localization technique and the formation control algorithm. Numerical simulations are provided to show the efficiency of the proposed algorithm. Experiments with three quadrotors tracking one target are conducted to evaluate the proposed target enclosing method in real platforms.

Cyber-Physical Systems (CPSs), comprising both software and physical components, arise in many industry-relevant domains and are often mission- or safety-critical. System-Level Verification (SLV) of CPSs aims at certifying that given (e.g., safety or liveness) specifications are met, or at estimating the value of some KPIs, when the system runs in its operational environment, i.e., in presence of inputs (from users or other systems) and/or of additional, uncontrolled disturbances. To enable SLV of complex systems from the early design phases, the currently most adopted approach envisions the simulation of a system model under the (time bounded) operational scenarios of interest. Simulation-based SLV can be computationally prohibitive (years of sequential simulation), since model simulation is computationally intensive and the set of scenarios of interest can huge. We present a technique that, given a collection of scenarios of interest (extracted from mass-storage databases or from symbolic structures, e.g., constraint-based scenario generators), computes parallel shortest simulation campaigns, which drive a possibly large number of system model simulators running in parallel in a HPC infrastructure through all (and only) those scenarios in the user-defined (possibly random) order, by wisely avoiding multiple simulations of repeated trajectories, thus minimising the overall completion time, compatibly with the available simulator memory capacity. Our experiments on Modelica/FMU and Simulink case study models with up to ~200 million scenarios show that our optimisation yields speedups as high as 8x. This, together with the enabled massive parallelisation, makes practically viable (a few weeks in a HPC infrastructure) verification tasks (both statistical and exhaustive, with respect to the given set of scenarios) which would otherwise take inconceivably long time.

Recently developed reduced-order modeling techniques aim to approximate nonlinear dynamical systems on low-dimensional manifolds learned from data. This is an effective approach for modeling dynamics in a post-transient regime where the effects of initial conditions and other disturbances have decayed. However, modeling transient dynamics near an underlying manifold, as needed for real-time control and forecasting applications, is complicated by the effects of fast dynamics and nonnormal sensitivity mechanisms. To begin to address these issues, we introduce a parametric class of nonlinear projections described by constrained autoencoder neural networks in which both the manifold and the projection fibers are learned from data. Our architecture uses invertible activation functions and biorthogonal weight matrices to ensure that the encoder is a left inverse of the decoder. We also introduce new dynamics-aware cost functions that promote learning of oblique projection fibers that account for fast dynamics and nonnormality. To demonstrate these methods and the specific challenges they address, we provide a detailed case study of a three-state model of vortex shedding in the wake of a bluff body immersed in a fluid, which has a two-dimensional slow manifold that can be computed analytically. In anticipation of future applications to high-dimensional systems, we also propose several techniques for constructing computationally efficient reduced-order models using our proposed nonlinear projection framework. This includes a novel sparsity-promoting penalty for the encoder that avoids detrimental weight matrix shrinkage via computation on the Grassmann manifold.

Existing error-bounded lossy compression techniques control the pointwise error during compression to guarantee the integrity of the decompressed data. However, they typically do not explicitly preserve the topological features in data. When performing post hoc analysis with decompressed data using topological methods, preserving topology in the compression process to obtain topologically consistent and correct scientific insights is desirable. In this paper, we introduce TopoSZ, an error-bounded lossy compression method that preserves the topological features in 2D and 3D scalar fields. Specifically, we aim to preserve the types and locations of local extrema as well as the level set relations among critical points captured by contour trees in the decompressed data. The main idea is to derive topological constraints from contour-tree-induced segmentation from the data domain, and incorporate such constraints with a customized error-controlled quantization strategy from the classic SZ compressor.Our method allows users to control the pointwise error and the loss of topological features during the compression process with a global error bound and a persistence threshold.

We study the fundamental problem of sampling independent events, called subset sampling. Specifically, consider a set of $n$ events $S=\{x_1, \ldots, x_n\}$, where each event $x_i$ has an associated probability $p(x_i)$. The subset sampling problem aims to sample a subset $T \subseteq S$, such that every $x_i$ is independently included in $S$ with probability $p_i$. A naive solution is to flip a coin for each event, which takes $O(n)$ time. However, the specific goal is to develop data structures that allow drawing a sample in time proportional to the expected output size $\mu=\sum_{i=1}^n p(x_i)$, which can be significantly smaller than $n$ in many applications. The subset sampling problem serves as an important building block in many tasks and has been the subject of various research for more than a decade. However, most of the existing subset sampling approaches are conducted in a static setting, where the events or their associated probability in set $S$ is not allowed to be changed over time. These algorithms incur either large query time or update time in a dynamic setting despite the ubiquitous time-evolving events with changing probability in real life. Therefore, it is a pressing need, but still, an open problem, to design efficient dynamic subset sampling algorithms. In this paper, we propose ODSS, the first optimal dynamic subset sampling algorithm. The expected query time and update time of ODSS are both optimal, matching the lower bounds of the subset sampling problem. We present a nontrivial theoretical analysis to demonstrate the superiority of ODSS. We also conduct comprehensive experiments to empirically evaluate the performance of ODSS. Moreover, we apply ODSS to a concrete application: influence maximization. We empirically show that our ODSS can improve the complexities of existing influence maximization algorithms on large real-world evolving social networks.

Latent linear dynamical systems with Bernoulli observations provide a powerful modeling framework for identifying the temporal dynamics underlying binary time series data, which arise in a variety of contexts such as binary decision-making and discrete stochastic processes (e.g., binned neural spike trains). Here we develop a spectral learning method for fast, efficient fitting of probit-Bernoulli latent linear dynamical system (LDS) models. Our approach extends traditional subspace identification methods to the Bernoulli setting via a transformation of the first and second sample moments. This results in a robust, fixed-cost estimator that avoids the hazards of local optima and the long computation time of iterative fitting procedures like the expectation-maximization (EM) algorithm. In regimes where data is limited or assumptions about the statistical structure of the data are not met, we demonstrate that the spectral estimate provides a good initialization for Laplace-EM fitting. Finally, we show that the estimator provides substantial benefits to real world settings by analyzing data from mice performing a sensory decision-making task.

Correlation based stereo matching has achieved outstanding performance, which pursues cost volume between two feature maps. Unfortunately, current methods with a fixed model do not work uniformly well across various datasets, greatly limiting their real-world applicability. To tackle this issue, this paper proposes a new perspective to dynamically calculate correlation for robust stereo matching. A novel Uncertainty Guided Adaptive Correlation (UGAC) module is introduced to robustly adapt the same model for different scenarios. Specifically, a variance-based uncertainty estimation is employed to adaptively adjust the sampling area during warping operation. Additionally, we improve the traditional non-parametric warping with learnable parameters, such that the position-specific weights can be learned. We show that by empowering the recurrent network with the UGAC module, stereo matching can be exploited more robustly and effectively. Extensive experiments demonstrate that our method achieves state-of-the-art performance over the ETH3D, KITTI, and Middlebury datasets when employing the same fixed model over these datasets without any retraining procedure. To target real-time applications, we further design a lightweight model based on UGAC, which also outperforms other methods over KITTI benchmarks with only 0.6 M parameters.

Verifying the correct behavior of robots in contact tasks is challenging due to model uncertainties associated with contacts. Standard methods for testing often fall short since all (uncountable many) solutions cannot be obtained. Instead, we propose to formally and efficiently verify robot behaviors in contact tasks using reachability analysis, which enables checking all the reachable states against user-provided specifications. To this end, we extend the state of the art in reachability analysis for hybrid (mixed discrete and continuous) dynamics subject to discrete-time input trajectories. In particular, we present a novel and scalable guard intersection approach to reliably compute the complex behavior caused by contacts. We model robots subject to contacts as hybrid automata in which crucial time delays are included. The usefulness of our approach is demonstrated by verifying safe human-robot interaction in the presence of constrained collisions, which was out of reach for existing methods.

Reachability types are a recent proposal that has shown promise in scaling to higher-order but monomorphic settings, tracking aliasing and separation on top of a substrate inspired by separation logic. The prior $\lambda^*$ reachability type system qualifies types with sets of reachable variables and guarantees separation if two terms have disjoint qualifiers. However, naive extensions with type polymorphism and/or precise reachability polymorphism are unsound, making $\lambda^*$ unsuitable for adoption in real languages. Combining reachability and type polymorphism that is precise, sound, and parametric remains an open challenge. This paper presents a rethinking of the design of reachability tracking and proposes a solution to the key challenge of reachability polymorphism. Instead of always tracking the transitive closure of reachable variables as in the original design, we only track variables reachable in a single step and compute transitive closures only when necessary, thus preserving chains of reachability over known variables that can be refined using substitution. To enable this property, we introduce a new freshness qualifier, which indicates variables whose reachability sets may grow during evaluation steps. These ideas yield the simply-typed $\lambda^\diamond$-calculus with precise lightweight, i.e., quantifier-free, reachability polymorphism, and the $\mathsf{F}_{<:}^\diamond$-calculus with bounded parametric polymorphism over types and reachability qualifiers. We prove type soundness and a preservation of separation property in Coq.

Knowledge Distillation (KD) is a widely-used technology to inherit information from cumbersome teacher models to compact student models, consequently realizing model compression and acceleration. Compared with image classification, object detection is a more complex task, and designing specific KD methods for object detection is non-trivial. In this work, we elaborately study the behaviour difference between the teacher and student detection models, and obtain two intriguing observations: First, the teacher and student rank their detected candidate boxes quite differently, which results in their precision discrepancy. Second, there is a considerable gap between the feature response differences and prediction differences between teacher and student, indicating that equally imitating all the feature maps of the teacher is the sub-optimal choice for improving the student's accuracy. Based on the two observations, we propose Rank Mimicking (RM) and Prediction-guided Feature Imitation (PFI) for distilling one-stage detectors, respectively. RM takes the rank of candidate boxes from teachers as a new form of knowledge to distill, which consistently outperforms the traditional soft label distillation. PFI attempts to correlate feature differences with prediction differences, making feature imitation directly help to improve the student's accuracy. On MS COCO and PASCAL VOC benchmarks, extensive experiments are conducted on various detectors with different backbones to validate the effectiveness of our method. Specifically, RetinaNet with ResNet50 achieves 40.4% mAP in MS COCO, which is 3.5% higher than its baseline, and also outperforms previous KD methods.

北京阿比特科技有限公司