Centralized training with decentralized execution (CTDE) is widely employed to stabilize partially observable multi-agent reinforcement learning (MARL) by utilizing a centralized value function during training. However, existing methods typically assume that agents make decisions based on their local observations independently, which may not lead to a correlated joint policy with sufficient coordination. Inspired by the concept of correlated equilibrium, we propose to introduce a \textit{strategy modification} to provide a mechanism for agents to correlate their policies. Specifically, we present a novel framework, AgentMixer, which constructs the joint fully observable policy as a non-linear combination of individual partially observable policies. To enable decentralized execution, one can derive individual policies by imitating the joint policy. Unfortunately, such imitation learning can lead to \textit{asymmetric learning failure} caused by the mismatch between joint policy and individual policy information. To mitigate this issue, we jointly train the joint policy and individual policies and introduce \textit{Individual-Global-Consistency} to guarantee mode consistency between the centralized and decentralized policies. We then theoretically prove that AgentMixer converges to an $\epsilon$-approximate Correlated Equilibrium. The strong experimental performance on three MARL benchmarks demonstrates the effectiveness of our method.
We consider ML query processing in distributed systems where GPU-enabled workers coordinate to execute complex queries: a computing style often seen in applications that interact with users in support of image processing and natural language processing. In such systems, coscheduling of GPU memory management and task placement represents a promising opportunity. We propose Compass, a novel framework that unifies these functions to reduce job latency while using resources efficiently, placing tasks where data dependencies will be satisfied, collocating tasks from the same job (when this will not overload the host or its GPU), and efficiently managing GPU memory. Comparison with other state of the art schedulers shows a significant reduction in completion times while requiring the same amount or even fewer resources. In one case, just half the servers were needed for processing the same workload.
Effective exploration is crucial to discovering optimal strategies for multi-agent reinforcement learning (MARL) in complex coordination tasks. Existing methods mainly utilize intrinsic rewards to enable committed exploration or use role-based learning for decomposing joint action spaces instead of directly conducting a collective search in the entire action-observation space. However, they often face challenges obtaining specific joint action sequences to reach successful states in long-horizon tasks. To address this limitation, we propose Imagine, Initialize, and Explore (IIE), a novel method that offers a promising solution for efficient multi-agent exploration in complex scenarios. IIE employs a transformer model to imagine how the agents reach a critical state that can influence each other's transition functions. Then, we initialize the environment at this state using a simulator before the exploration phase. We formulate the imagination as a sequence modeling problem, where the states, observations, prompts, actions, and rewards are predicted autoregressively. The prompt consists of timestep-to-go, return-to-go, influence value, and one-shot demonstration, specifying the desired state and trajectory as well as guiding the action generation. By initializing agents at the critical states, IIE significantly increases the likelihood of discovering potentially important under-explored regions. Despite its simplicity, empirical results demonstrate that our method outperforms multi-agent exploration baselines on the StarCraft Multi-Agent Challenge (SMAC) and SMACv2 environments. Particularly, IIE shows improved performance in the sparse-reward SMAC tasks and produces more effective curricula over the initialized states than other generative methods, such as CVAE-GAN and diffusion models.
We consider ML query processing in distributed systems where GPU-enabled workers coordinate to execute complex queries: a computing style often seen in applications that interact with users in support of image processing and natural language processing. In such systems, coscheduling of GPU memory management and task placement represents a promising opportunity. We propose Navigator, a novel framework that unifies these functions to reduce job latency while using resources efficiently, placing tasks where data dependencies will be satisfied, collocating tasks from the same job (when this will not overload the host or its GPU), and efficiently managing GPU memory. Comparison with other state of the art schedulers shows a significant reduction in completion times while requiring the same amount or even fewer resources. In one case, just half the servers were needed for processing the same workload.
Despite achieving promising fairness-error trade-offs, in-processing mitigation techniques for group fairness cannot be employed in numerous practical applications with limited computation resources or no access to the training pipeline of the prediction model. In these situations, post-processing is a viable alternative. However, current methods are tailored to specific problem settings and fairness definitions and hence, are not as broadly applicable as in-processing. In this work, we propose a framework that turns any regularized in-processing method into a post-processing approach. This procedure prescribes a way to obtain post-processing techniques for a much broader range of problem settings than the prior post-processing literature. We show theoretically and through extensive experiments that our framework preserves the good fairness-error trade-offs achieved with in-processing and can improve over the effectiveness of prior post-processing methods. Finally, we demonstrate several advantages of a modular mitigation strategy that disentangles the training of the prediction model from the fairness mitigation, including better performance on tasks with partial group labels.
While recent progress in multimodal large language models tackles various modality tasks, they posses limited integration capabilities for complex multi-modality tasks, consequently constraining the development of the field. In this work, we take the initiative to explore and propose the LLMBind, a unified framework for modality task integration, which binds Large Language Models and corresponding pre-trained task models with task-specific tokens. Consequently, LLMBind can interpret inputs and produce outputs in versatile combinations of image, text, video, and audio. Specifically, we introduce a Mixture-of-Experts technique to enable effective learning for different multimodal tasks through collaboration among diverse experts. Furthermore, we create a multi-task dataset comprising 400k instruction data, which unlocks the ability for interactive visual generation and editing tasks. Extensive experiments show the effectiveness of our framework across various tasks, including image, video, audio generation, image segmentation, and image editing. More encouragingly, our framework can be easily extended to other modality tasks, showcasing the promising potential of creating a unified AI agent for modeling universal modalities.
Full-parameter fine-tuning has become the go-to choice for adapting language models (LMs) to downstream tasks due to its excellent performance. As LMs grow in size, fine-tuning the full parameters of LMs requires a prohibitively large amount of GPU memory. Existing approaches utilize zeroth-order optimizer to conserve GPU memory, which can potentially compromise the performance of LMs as non-zero order optimizers tend to converge more readily on most downstream tasks. In this paper, we propose a novel optimizer-independent end-to-end hierarchical fine-tuning strategy, HiFT, which only updates a subset of parameters at each training step. HiFT can significantly reduce the amount of gradients and optimizer state parameters residing in GPU memory at the same time, thereby reducing GPU memory usage. Our results demonstrate that: (1) HiFT achieves comparable performance to parameter-efficient fine-tuning and standard full parameter fine-tuning. (2) HiFT supports various optimizers including AdamW, AdaGrad, SGD, etc. (3) HiFT can save more than 60\% GPU memory compared with standard full-parameter fine-tuning for 7B model. (4) HiFT enables full-parameter fine-tuning of a 7B model on single 48G A6000 with a precision of 32 using the AdamW optimizer, without using any memory saving techniques.
Federated learning (FL) allows multiple parties (distributed devices) to train a machine learning model without sharing raw data. How to effectively and efficiently utilize the resources on devices and the central server is a highly interesting yet challenging problem. In this paper, we propose an efficient split federated learning algorithm (ESFL) to take full advantage of the powerful computing capabilities at a central server under a split federated learning framework with heterogeneous end devices (EDs). By splitting the model into different submodels between the server and EDs, our approach jointly optimizes user-side workload and server-side computing resource allocation by considering users' heterogeneity. We formulate the whole optimization problem as a mixed-integer non-linear program, which is an NP-hard problem, and develop an iterative approach to obtain an approximate solution efficiently. Extensive simulations have been conducted to validate the significantly increased efficiency of our ESFL approach compared with standard federated learning, split learning, and splitfed learning.
We consider a sequential decision making task, where the goal is to optimize an unknown function without evaluating parameters that violate an a~priori unknown (safety) constraint. A common approach is to place a Gaussian process prior on the unknown functions and allow evaluations only in regions that are safe with high probability. Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case. Moreover, the way in which they exploit regularity assumptions about the constraint introduces an additional critical hyperparameter. In this paper, we propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate. The combination of this exploration criterion with a well known Bayesian optimization acquisition function yields a novel safe Bayesian optimization selection criterion. Our approach is naturally applicable to continuous domains and does not require additional explicit hyperparameters. We theoretically analyze the method and show that we do not violate the safety constraint with high probability and that we learn about the value of the safe optimum up to arbitrary precision. Empirical evaluations demonstrate improved data-efficiency and scalability.
Parameter-efficient fine-tuning (PEFT) has emerged as an effective method for adapting pre-trained language models to various tasks efficiently. Recently, there has been a growing interest in transferring knowledge from one or multiple tasks to the downstream target task to achieve performance improvements. However, current approaches typically either train adapters on individual tasks or distill shared knowledge from source tasks, failing to fully exploit task-specific knowledge and the correlation between source and target tasks. To overcome these limitations, we propose PEMT, a novel parameter-efficient fine-tuning framework based on multi-task transfer learning. PEMT extends the mixture-of-experts (MoE) framework to capture the transferable knowledge as a weighted combination of adapters trained on source tasks. These weights are determined by a gated unit, measuring the correlation between the target and each source task using task description prompt vectors. To fully exploit the task-specific knowledge, we also propose the Task Sparsity Loss to improve the sparsity of the gated unit. We conduct experiments on a broad range of tasks over 17 datasets. The experimental results demonstrate our PEMT yields stable improvements over full fine-tuning, and state-of-the-art PEFT and knowledge transferring methods on various tasks. The results highlight the effectiveness of our method which is capable of sufficiently exploiting the knowledge and correlation features across multiple tasks.
Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.