亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Besides its common use cases in epidemiology, political, and social sciences, causality turns out to be crucial in evaluating the fairness of automated decisions, both in a legal and everyday sense. We provide arguments and examples, of why causality is particularly important for fairness evaluation. In particular, we point out the social impact of non-causal predictions and the legal anti-discrimination process that relies on causal claims. We conclude with a discussion about the challenges and limitations of applying causality in practical scenarios as well as possible solutions.

相關內容

A comprehensive evaluation is critical to assess the capabilities of large multimodal models (LMM). In this study, we evaluate the state-of-the-art LMMs, namely GPT-4V and Gemini, utilizing the VQAonline dataset. VQAonline is an end-to-end authentic VQA dataset sourced from a diverse range of everyday users. Compared previous benchmarks, VQAonline well aligns with real-world tasks. It enables us to effectively evaluate the generality of an LMM, and facilitates a direct comparison with human performance. To comprehensively evaluate GPT-4V and Gemini, we generate seven types of metadata for around 2,000 visual questions, such as image type and the required image processing capabilities. Leveraging this array of metadata, we analyze the zero-shot performance of GPT-4V and Gemini, and identify the most challenging questions for both models.

This paper investigates the relationship between scientists' cognitive profile and their ability to generate innovative ideas and gain scientific recognition. We propose a novel author-level metric based on the semantic representation of researchers' past publications to measure cognitive diversity both at individual and team levels. Using PubMed Knowledge Graph (PKG), we analyze the impact of cognitive diversity on novelty, as measured by combinatorial novelty indicators and peer labels on Faculty Opinion. We assessed scientific impact through citations and disruption indicators. We show that the presence of exploratory individuals (i.e., cognitively diverse) is beneficial in generating distant knowledge combinations, but only when balanced by a significant proportion of exploitative individuals (i.e., cognitively specialized). Furthermore, teams with a high proportion of exploitative profiles tend to consolidate science, whereas those with a significant share of both profiles tend to disrupt it. Cognitive diversity between team members appears to be always beneficial to combining more distant knowledge. However, to maximize the relevance of these distant combinations of knowledge, maintaining a limited number of exploratory individuals is essential, as exploitative individuals must question and debate their novel perspectives. These specialized individuals are the most qualified to extract the full potential of novel ideas and integrate them within the existing scientific paradigm.

With the success of self-supervised representations, researchers seek a better understanding of the information encapsulated within a representation. Among various interpretability methods, we focus on classification-based linear probing. We aim to foster a solid understanding and provide guidelines for linear probing by constructing a novel mathematical framework leveraging information theory. First, we connect probing with the variational bounds of mutual information (MI) to relax the probe design, equating linear probing with fine-tuning. Then, we investigate empirical behaviors and practices of probing through our mathematical framework. We analyze the layer-wise performance curve being convex, which seemingly violates the data processing inequality. However, we show that the intermediate representations can have the biggest MI estimate because of the tradeoff between better separability and decreasing MI. We further suggest that the margin of linearly separable representations can be a criterion for measuring the "goodness of representation." We also compare accuracy with MI as the measuring criteria. Finally, we empirically validate our claims by observing the self-supervised speech models on retaining word and phoneme information.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.

Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Game theory has by now found numerous applications in various fields, including economics, industry, jurisprudence, and artificial intelligence, where each player only cares about its own interest in a noncooperative or cooperative manner, but without obvious malice to other players. However, in many practical applications, such as poker, chess, evader pursuing, drug interdiction, coast guard, cyber-security, and national defense, players often have apparently adversarial stances, that is, selfish actions of each player inevitably or intentionally inflict loss or wreak havoc on other players. Along this line, this paper provides a systematic survey on three main game models widely employed in adversarial games, i.e., zero-sum normal-form and extensive-form games, Stackelberg (security) games, zero-sum differential games, from an array of perspectives, including basic knowledge of game models, (approximate) equilibrium concepts, problem classifications, research frontiers, (approximate) optimal strategy seeking techniques, prevailing algorithms, and practical applications. Finally, promising future research directions are also discussed for relevant adversarial games.

Over the last several years, the field of natural language processing has been propelled forward by an explosion in the use of deep learning models. This survey provides a brief introduction to the field and a quick overview of deep learning architectures and methods. It then sifts through the plethora of recent studies and summarizes a large assortment of relevant contributions. Analyzed research areas include several core linguistic processing issues in addition to a number of applications of computational linguistics. A discussion of the current state of the art is then provided along with recommendations for future research in the field.

北京阿比特科技有限公司