We consider Ramp Metering (RM) at the microscopic level subject to vehicle following safety constraints for a single freeway with arbitrary number of on- and off-ramps. The arrival times of vehicles to the on-ramps, as well as their destinations are modeled by exogenous stochastic processes. Once a vehicle is released from an on-ramp, it accelerates towards the free flow speed if it is not obstructed by another vehicle; once it gets close to another vehicle, it adopts a safe gap vehicle following behavior. The vehicle exits the freeway once it reaches its destination off-ramp. We design traffic-responsive RM policies that maximize the freeway throughput. For a given routing matrix, the throughput of a RM policy is characterized by the set of on-ramp arrival rates for which the queue sizes at all the on-ramps remain bounded in expectation. The proposed RM policies work in synchronous cycles during which an on-ramp does not release more vehicles than its queue size at the beginning of the cycle. Moreover, all the policies operate under vehicle following safety constraints, where new vehicles are released only if there is enough gap on the mainline at the moment of release. We provide three policies under which each on-ramp: (i) pauses release for a time interval at the end of a cycle, or (ii) modulates the release rate during a cycle, or (iii) adopts a conservative safe gap criterion for release during a cycle. All the proposed policies are reactive, meaning that they only require real-time traffic measurements without the need for demand prediction. The throughput of these policies is characterized by studying stochastic stability of the induced Markov chains, and is proven to be maximized when the merging speed of all the on-ramps equals the free flow speed. Simulations are provided to illustrate the performance of our policies and compare with a well-known RM policy from the literature.
Despite the impressive successes of deep learning approaches for various chemical problems such as property prediction, virtual screening, and de novo molecule design, separately designed models for specific tasks are usually required, and it is often difficult to synergistically combine these models for novel tasks. To address this, here we present a bidirectional molecular foundation model that can be used for both molecular structure and property inferences through a single model, inspired by recent multimodal learning methods such as VLP. Furthermore, thanks to the outstanding structure/property alignment in a common embedding space, experimental results confirm that our method leads to state-of-the-art performance and interpretable attention maps in both multimodal and unimodal tasks, including conditional molecule generation, property prediction, molecule classification, and reaction prediction.
We propose a new \textit{quadratic programming-based} method of approximating a nonstandard density using a multivariate Gaussian density. Such nonstandard densities usually arise while developing posterior samplers for unobserved components models involving inequality constraints on the parameters. For instance, Chan et al. (2016) provided a new model of trend inflation with linear inequality constraints on the stochastic trend. We implemented the proposed quadratic programming-based method for this model and compared it to the existing approximation. We observed that the proposed method works as well as the existing approximation in terms of the final trend estimates while achieving gains in terms of sample efficiency.
This paper develops and analyzes an accelerated proximal descent method for finding stationary points of nonconvex composite optimization problems. The objective function is of the form $f+h$ where $h$ is a proper closed convex function, $f$ is a differentiable function on the domain of $h$, and $\nabla f$ is Lipschitz continuous on the domain of $h$. The main advantage of this method is that it is "parameter-free" in the sense that it does not require knowledge of the Lipschitz constant of $\nabla f$ or of any global topological properties of $f$. It is shown that the proposed method can obtain an $\varepsilon$-approximate stationary point with iteration complexity bounds that are optimal, up to logarithmic terms over $\varepsilon$, in both the convex and nonconvex settings. Some discussion is also given about how the proposed method can be leveraged in other existing optimization frameworks, such as min-max smoothing and penalty frameworks for constrained programming, to create more specialized parameter-free methods. Finally, numerical experiments are presented to support the practical viability of the method.
This paper characterizes the impact of covariate serial dependence on the non-asymptotic estimation error bound of penalized regressions (PRs). Focusing on the direct relationship between the degree of cross-correlation between covariates and the estimation error bound of PRs, we show that orthogonal or weakly cross-correlated stationary AR processes can exhibit high spurious correlations caused by serial dependence. We provide analytical results on the distribution of the sample cross-correlation in the case of two orthogonal Gaussian AR(1) processes, and extend and validate them through an extensive simulation study. Furthermore, we introduce a new procedure to mitigate spurious correlations in a time series setting, applying PRs to pre-whitened (ARMA filtered) time series. We show that under mild assumptions our procedure allows both to reduce the estimation error and to develop an effective forecasting strategy. The estimation accuracy of our proposal is validated through additional simulations, as well as an empirical application to a large set of monthly macroeconomic time series relative to the Euro Area.
With the modern software and online platforms to collect massive amount of data, there is an increasing demand of applying causal inference methods at large scale when randomized experimentation is not viable. Weighting methods that directly incorporate covariate balancing have recently gained popularity for estimating causal effects in observational studies. These methods reduce the manual efforts required by researchers to iterate between propensity score modeling and balance checking until a satisfied covariate balance result. However, conventional solvers for determining weights lack the scalability to apply such methods on large scale datasets in companies like Snap Inc. To address the limitations and improve computational efficiency, in this paper we present scalable algorithms, DistEB and DistMS, for two balancing approaches: entropy balancing and MicroSynth. The solvers have linear time complexity and can be conveniently implemented in distributed computing frameworks such as Spark, Hive, etc. We study the properties of balancing approaches at different scales up to 1 million treated units and 487 covariates. We find that with larger sample size, both bias and variance in the causal effect estimation are significantly reduced. The results emphasize the importance of applying balancing approaches on large scale datasets. We combine the balancing approach with a synthetic control framework and deploy an end-to-end system for causal impact estimation at Snap Inc.
Safety is crucial for robotic missions within an uncertain environment. Common safety requirements such as collision avoidance are only state-dependent, which can be restrictive for complex missions. In this work, we address a more general formulation as safe-return constraints, which require the existence of a return-policy to drive the system back to a set of safe states with high probability. The robot motion is modeled as a Markov Decision Process (MDP) with probabilistic labels, which can be highly non-ergodic. The robotic task is specified as Linear Temporal Logic (LTL) formulas over these labels, such as surveillance and transportation. We first provide theoretical guarantees on the re-formulation of such safe-return constraints, and a baseline solution based on computing two complete product automata. Furthermore, to tackle the computational complexity, we propose a hierarchical planning algorithm that combines the feature-based symbolic and temporal abstraction with constrained optimization. It synthesizes simultaneously two dependent motion policies: the outbound policy minimizes the overall cost of satisfying the task with a high probability, while the return policy ensures the safe-return constraints. The problem formulation is versatile regarding the robot model, task specifications and safety constraints. The proposed hierarchical algorithm is more efficient and can solve much larger problems than the baseline solution, with only a slight loss of optimality. Numerical validations include simulations and hardware experiments of a search-and-rescue mission and a planetary exploration mission over various system sizes.
Many classification problems consider classes that form a hierarchy. Classifiers that are aware of this hierarchy may be able to make confident predictions at a coarse level despite being uncertain at the fine-grained level. While it is generally possible to vary the granularity of predictions using a threshold at inference time, most contemporary work considers only leaf-node prediction, and almost no prior work has compared methods at multiple operating points. We present an efficient algorithm to produce operating characteristic curves for any method that assigns a score to every class in the hierarchy. Applying this technique to evaluate existing methods reveals that top-down classifiers are dominated by a naive flat softmax classifier across the entire operating range. We further propose two novel loss functions and show that a soft variant of the structured hinge loss is able to significantly outperform the flat baseline. Finally, we investigate the poor accuracy of top-down classifiers and demonstrate that they perform relatively well on unseen classes. Code is available online at //github.com/jvlmdr/hiercls.
Autonomous vehicles and robots require increasingly more robustness and reliability to meet the demands of modern tasks. These requirements specially apply to cameras onboard such vehicles because they are the predominant sensors to acquire information about the environment and support actions. Cameras must maintain proper functionality and take automatic countermeasures if necessary. However, few works examine the practical use of a general condition monitoring approach for cameras and designs countermeasures in the context of an envisaged high-level application. We propose a generic and interpretable self-health-maintenance framework for cameras based on data- and physically-grounded models. To this end, we determine two reliable, real-time capable estimators for typical image effects of a camera in poor condition (blur, noise phenomena and most common combinations) by comparing traditional and retrained machine learning-based approaches in extensive experiments. Furthermore, we demonstrate on a real-world ground vehicle how one can adjust the camera parameters to achieve optimal whole-system capability based on experimental (non-linear and non-monotonic) input-output performance curves, using object detection, motion blur and sensor noise as examples. Our framework not only provides a practical ready-to-use solution to evaluate and maintain the health of cameras, but can also serve as a basis for extensions to tackle more sophisticated problems that combine additional data sources (e.g., sensor or environment parameters) empirically in order to attain fully reliable and robust machines.
Front-end electronics equipped with high-speed digitizers are being used and proposed for future nuclear detectors. Recent literature reveals that deep learning models, especially one-dimensional convolutional neural networks, are promising when dealing with digital signals from nuclear detectors. Simulations and experiments demonstrate the satisfactory accuracy and additional benefits of neural networks in this area. However, specific hardware accelerating such models for online operations still needs to be studied. In this work, we introduce PulseDL-II, a system-on-chip (SoC) specially designed for applications of event feature (time, energy, etc.) extraction from pulses with deep learning. Based on the previous version, PulseDL-II incorporates a RISC CPU into the system structure for better functional flexibility and integrity. The neural network accelerator in the SoC adopts a three-level (arithmetic unit, processing element, neural network) hierarchical architecture and facilitates parameter optimization of the digital design. Furthermore, we devise a quantization scheme compatible with deep learning frameworks (e.g., TensorFlow) within a selected subset of layer types. We validate the correct operations of PulseDL-II on field programmable gate arrays (FPGA) alone and with an experimental setup comprising a direct digital synthesis (DDS) and analog-to-digital converters (ADC). The proposed system achieved 60 ps time resolution and 0.40% energy resolution at signal to noise ratio (SNR) of 47.4 dB.
In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.