Seven degree-of-freedom (DOF) robot arms have one redundant DOF which does not change the motion of the end effector. The redundant DOF offers greater manipulability of the arm configuration to avoid obstacles and singularities, but it must be parameterized to fully specify the joint angles for a given end effector pose. For 7-DOF revolute (7R) manipulators, we introduce a new concept of generalized shoulder-elbow-wrist (SEW) angle, a generalization of the conventional SEW angle but with an arbitrary choice of the reference direction function. The SEW angle is widely used and easy for human operators to visualize as a rotation of the elbow about the shoulder-wrist line. Since other redundancy parameterizations including the conventional SEW angle encounter an algorithmic singularity along a line in the workspace, we introduce a special choice of the reference direction function called the stereographic SEW angle which has a singularity only along a half-line, which can be placed out of reach. We prove that such a singularity is unavoidable for any parameterization. We also include expressions for the SEW angle Jacobian along with singularity analysis. Finally, we provide efficient and singularity-robust inverse kinematics solutions for most known 7R manipulators using the general SEW angle and the subproblem decomposition method. These solutions are often closed-form but may sometimes involve a 1D or 2D search in the general case. Search-based solutions may be converted to finding zeros of a high-order polynomial. Inverse kinematics solutions, examples, and evaluations are available in a publicly accessible repository.
Log-linear models are widely used to express the association in multivariate frequency data on contingency tables. The paper focuses on the power analysis for testing the goodness-of-fit hypothesis for this model type. Conventionally, for the power-related sample size calculations a deviation from the null hypothesis (effect size) is specified by means of the chi-square goodness-of-fit index. It is argued that the odds ratio is a more natural measure of effect size, with the advantage of having a data-relevant interpretation. Therefore, a class of log-affine models that are specified by odds ratios whose values deviate from those of the null by a small amount can be chosen as an alternative. Being expressed as sets of constraints on odds ratios, both hypotheses are represented by smooth surfaces in the probability simplex, and thus, the power analysis can be given a geometric interpretation as well. A concept of geometric power is introduced and a Monte-Carlo algorithm for its estimation is proposed. The framework is applied to the power analysis of goodness-of-fit in the context of multinomial sampling. An iterative scaling procedure for generating distributions from a log-affine model is described and its convergence is proved. To illustrate, the geometric power analysis is carried out for data from a clinical study.
A novel approach is given to overcome the computational challenges of the full-matrix Adaptive Gradient algorithm (Full AdaGrad) in stochastic optimization. By developing a recursive method that estimates the inverse of the square root of the covariance of the gradient, alongside a streaming variant for parameter updates, the study offers efficient and practical algorithms for large-scale applications. This innovative strategy significantly reduces the complexity and resource demands typically associated with full-matrix methods, enabling more effective optimization processes. Moreover, the convergence rates of the proposed estimators and their asymptotic efficiency are given. Their effectiveness is demonstrated through numerical studies.
We consider the problem of finite-time identification of linear dynamical systems from $T$ samples of a single trajectory. Recent results have predominantly focused on the setup where no structural assumption is made on the system matrix $A^* \in \mathbb{R}^{n \times n}$, and have consequently analyzed the ordinary least squares (OLS) estimator in detail. We assume prior structural information on $A^*$ is available, which can be captured in the form of a convex set $\mathcal{K}$ containing $A^*$. For the solution of the ensuing constrained least squares estimator, we derive non-asymptotic error bounds in the Frobenius norm that depend on the local size of $\mathcal{K}$ at $A^*$. To illustrate the usefulness of these results, we instantiate them for four examples, namely when (i) $A^*$ is sparse and $\mathcal{K}$ is a suitably scaled $\ell_1$ ball; (ii) $\mathcal{K}$ is a subspace; (iii) $\mathcal{K}$ consists of matrices each of which is formed by sampling a bivariate convex function on a uniform $n \times n$ grid (convex regression); (iv) $\mathcal{K}$ consists of matrices each row of which is formed by uniform sampling (with step size $1/T$) of a univariate Lipschitz function. In all these situations, we show that $A^*$ can be reliably estimated for values of $T$ much smaller than what is needed for the unconstrained setting.
We study the weak convergence behaviour of the Leimkuhler--Matthews method, a non-Markovian Euler-type scheme with the same computational cost as the Euler scheme, for the approximation of the stationary distribution of a one-dimensional McKean--Vlasov Stochastic Differential Equation (MV-SDE). The particular class under study is known as mean-field (overdamped) Langevin equations (MFL). We provide weak and strong error results for the scheme in both finite and infinite time. We work under a strong convexity assumption. Based on a careful analysis of the variation processes and the Kolmogorov backward equation for the particle system associated with the MV-SDE, we show that the method attains a higher-order approximation accuracy in the long-time limit (of weak order convergence rate $3/2$) than the standard Euler method (of weak order $1$). While we use an interacting particle system (IPS) to approximate the MV-SDE, we show the convergence rate is independent of the dimension of the IPS and this includes establishing uniform-in-time decay estimates for moments of the IPS, the Kolmogorov backward equation and their derivatives. The theoretical findings are supported by numerical tests.
We consider the problem of the discrete-time approximation of the solution of a one-dimensional SDE with piecewise locally Lipschitz drift and continuous diffusion coefficients with polynomial growth. In this paper, we study the strong convergence of a (semi-explicit) exponential-Euler scheme previously introduced in Bossy et al. (2021). We show the usual 1/2 rate of convergence for the exponential-Euler scheme when the drift is continuous. When the drift is discontinuous, the convergence rate is penalised by a factor {$\epsilon$} decreasing with the time-step. We examine the case of the diffusion coefficient vanishing at zero, which adds a positivity preservation condition and a convergence analysis that exploits the negative moments and exponential moments of the scheme with the help of change of time technique introduced in Berkaoui et al. (2008). Asymptotic behaviour and theoretical stability of the exponential scheme, as well as numerical experiments, are also presented.
We consider the problem of linearly ordered (LO) coloring of hypergraphs. A hypergraph has an LO coloring if there is a vertex coloring, using a set of ordered colors, so that (i) no edge is monochromatic, and (ii) each edge has a unique maximum color. It is an open question as to whether or not a 2-LO colorable 3-uniform hypergraph can be LO colored with 3 colors in polynomial time. Nakajima and Zivn\'{y} recently gave a polynomial-time algorithm to color such hypergraphs with $\widetilde{O}(n^{1/3})$ colors and asked if SDP methods can be used directly to obtain improved bounds. Our main result is to show how to use SDP-based rounding methods to produce an LO coloring with $\widetilde{O}(n^{1/5})$ colors for such hypergraphs. We first show that we can reduce the problem to cases with highly structured SDP solutions, which we call balanced hypergraphs. Then we show how to apply classic SDP-rounding tools in this case. We believe that the reduction to balanced hypergraphs is novel and could be of independent interest.
Computing is still under a significant threat from ransomware, which necessitates prompt action to prevent it. Ransomware attacks can have a negative impact on how smart grids, particularly digital substations. In addition to examining a ransomware detection method using artificial intelligence (AI), this paper offers a ransomware attack modeling technique that targets the disrupted operation of a digital substation. The first, binary data is transformed into image data and fed into the convolution neural network model using federated learning. The experimental findings demonstrate that the suggested technique detects ransomware with a high accuracy rate.
The Hierarchy Of Time-Surfaces (HOTS) algorithm, a neuromorphic approach for feature extraction from event data, presents promising capabilities but faces challenges in accuracy and compatibility with neuromorphic hardware. In this paper, we introduce Sup3r, a Semi-Supervised algorithm aimed at addressing these challenges. Sup3r enhances sparsity, stability, and separability in the HOTS networks. It enables end-to-end online training of HOTS networks replacing external classifiers, by leveraging semi-supervised learning. Sup3r learns class-informative patterns, mitigates confounding features, and reduces the number of processed events. Moreover, Sup3r facilitates continual and incremental learning, allowing adaptation to data distribution shifts and learning new tasks without forgetting. Preliminary results on N-MNIST demonstrate that Sup3r achieves comparable accuracy to similarly sized Artificial Neural Networks trained with back-propagation. This work showcases the potential of Sup3r to advance the capabilities of HOTS networks, offering a promising avenue for neuromorphic algorithms in real-world applications.
State transition algorithm (STA) is a metaheuristic method for global optimization. Recently, a modified STA named parameter optimal state transition algorithm (POSTA) is proposed. In POSTA, the performance of expansion operator, rotation operator and axesion operator is optimized through a parameter selection mechanism. But due to the insufficient utilization of historical information, POSTA still suffers from slow convergence speed and low solution accuracy on specific problems. To make better use of the historical information, Nelder-Mead (NM) simplex search and quadratic interpolation (QI) are integrated into POSTA. The enhanced POSTA is tested against 14 benchmark functions with 20-D, 30-D and 50-D space. An experimental comparison with several competitive metaheuristic methods demonstrates the effectiveness of the proposed method.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.