亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Initially considered as low-power units with limited autonomous processing, Edge IoT devices have seen a paradigm shift with the introduction of FPGAs and AI accelerators. This advancement has vastly amplified their computational capabilities, emphasizing the practicality of edge AI. Such progress introduces new challenges of optimizing AI tasks for the limitations of energy and network resources typical in Edge computing environments. Our study explores methods that enable distributed data processing through AI-enabled edge devices, enhancing collaborative learning capabilities. A key focus of our research is the challenge of determining confidence levels in learning outcomes, considering the spatial and temporal variability of data sets encountered by independent agents. To address this issue, we investigate the application of Bayesian neural networks, proposing a novel approach to manage uncertainty in distributed learning environments.

相關內容

As autonomous driving technology progresses, the need for precise trajectory prediction models becomes paramount. This paper introduces an innovative model that infuses cognitive insights into trajectory prediction, focusing on perceived safety and dynamic decision-making. Distinct from traditional approaches, our model excels in analyzing interactions and behavior patterns in mixed autonomy traffic scenarios. It represents a significant leap forward, achieving marked performance improvements on several key datasets. Specifically, it surpasses existing benchmarks with gains of 16.2% on the Next Generation Simulation (NGSIM), 27.4% on the Highway Drone (HighD), and 19.8% on the Macao Connected Autonomous Driving (MoCAD) dataset. Our proposed model shows exceptional proficiency in handling corner cases, essential for real-world applications. Moreover, its robustness is evident in scenarios with missing or limited data, outperforming most of the state-of-the-art baselines. This adaptability and resilience position our model as a viable tool for real-world autonomous driving systems, heralding a new standard in vehicle trajectory prediction for enhanced safety and efficiency.

Low-rank matrix approximation play a ubiquitous role in various applications such as image processing, signal processing, and data analysis. Recently, random algorithms of low-rank matrix approximation have gained widespread adoption due to their speed, accuracy, and robustness, particularly in their improved implementation on modern computer architectures. Existing low-rank approximation algorithms often require prior knowledge of the rank of the matrix, which is typically unknown. To address this bottleneck, we propose a low-rank approximation algorithm termed efficient orthogonal decomposition with automatic basis extraction (EOD-ABE) tailored for the scenario where the rank of the matrix is unknown. Notably, we introduce a randomized algorithm to automatically extract the basis that reveals the rank. The efficacy of the proposed algorithms is theoretically and numerically validated, demonstrating superior speed, accuracy, and robustness compared to existing methods. Furthermore, we apply the algorithms to image reconstruction, achieving remarkable results.

Recently, tensor low-rank representation (TLRR) has become a popular tool for tensor data recovery and clustering, due to its empirical success and theoretical guarantees. However, existing TLRR methods consider Gaussian or gross sparse noise, inevitably leading to performance degradation when the tensor data are contaminated by outliers or sample-specific corruptions. This paper develops an outlier-robust tensor low-rank representation (OR-TLRR) method that provides outlier detection and tensor data clustering simultaneously based on the t-SVD framework. For tensor observations with arbitrary outlier corruptions, OR-TLRR has provable performance guarantee for exactly recovering the row space of clean data and detecting outliers under mild conditions. Moreover, an extension of OR-TLRR is proposed to handle the case when parts of the data are missing. Finally, extensive experimental results on synthetic and real data demonstrate the effectiveness of the proposed algorithms. We release our code at //github.com/twugithub/2024-AISTATS-ORTLRR.

Recent successes in Generative Artificial Intelligence (GenAI) have led to new technologies capable of generating high-quality code, natural language, and images. The next step is to integrate GenAI technology into products, a task typically conducted by software developers. Such product development always comes with a certain risk of liability. Within this article, we want to shed light on the current state of two such risks: data protection and copyright. Both aspects are crucial for GenAI. This technology deals with data for both model training and generated output. We summarize key aspects regarding our current knowledge that every software developer involved in product development using GenAI should be aware of to avoid critical mistakes that may expose them to liability claims.

FPGAs are rarely mentioned when discussing the implementation of large machine learning applications, such as Large Language Models (LLMs), in the data center. There has been much evidence showing that single FPGAs can be competitive with GPUs in performance for some computations, especially for low latency, and often much more efficient when power is considered. This suggests that there is merit to exploring the use of multiple FPGAs for large machine learning applications. The challenge with using multiple FPGAs is that there is no commonly-accepted flow for developing and deploying multi-FPGA applications, i.e., there are no tools to describe a large application, map it to multiple FPGAs and then deploy the application on a multi-FPGA platform. In this paper, we explore the feasibility of implementing large transformers using multiple FPGAs by developing a scalable multi-FPGA platform and some tools to map large applications to the platform. We validate our approach by designing an efficient multi-FPGA version of the I-BERT transformer and implement one encoder using six FPGAs as a working proof-of-concept to show that our platform and tools work. Based on our proof-of-concept prototype and the estimations of performance using the latest FPGAs compared to GPUs, we conclude that there can be a place for FPGAs in the world of large machine learning applications. We demonstrate a promising first step that shows that with the right infrastructure and tools it is reasonable to continue to explore the possible benefits of using FPGAs for applications such as LLMs.

Tactile sensing has become a popular sensing modality for robot manipulators, due to the promise of providing robots with the ability to measure the rich contact information that gets transmitted through its sense of touch. Among the diverse range of information accessible from tactile sensors, torques transmitted from the grasped object to the fingers through extrinsic environmental contact may be particularly important for tasks such as object insertion. However, tactile torque estimation has received relatively little attention when compared to other sensing modalities, such as force, texture, or slip identification. In this work, we introduce the notion of the Tactile Dipole Moment, which we use to estimate tilt torques from gel-based visuotactile sensors. This method does not rely on deep learning, sensor-specific mechanical, or optical modeling, and instead takes inspiration from electromechanics to analyze the vector field produced from 2D marker displacements. Despite the simplicity of our technique, we demonstrate its ability to provide accurate torque readings over two different tactile sensors and three object geometries, and highlight its practicality for the task of USB stick insertion with a compliant robot arm. These results suggest that simple analytical calculations based on dipole moments can sufficiently extract physical quantities from visuotactile sensors.

Artificial neural networks have advanced due to scaling dimensions, but conventional computing faces inefficiency due to the von Neumann bottleneck. In-memory computation architectures, like memristors, offer promise but face challenges due to hardware non-idealities. This work proposes and experimentally demonstrates layer ensemble averaging, a technique to map pre-trained neural network solutions from software to defective hardware crossbars of emerging memory devices and reliably attain near-software performance on inference. The approach is investigated using a custom 20,000-device hardware prototyping platform on a continual learning problem where a network must learn new tasks without catastrophically forgetting previously learned information. Results demonstrate that by trading off the number of devices required for layer mapping, layer ensemble averaging can reliably boost defective memristive network performance up to the software baseline. For the investigated problem, the average multi-task classification accuracy improves from 61 % to 72 % (< 1 % of software baseline) using the proposed approach.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Data transmission between two or more digital devices in industry and government demands secure and agile technology. Digital information distribution often requires deployment of Internet of Things (IoT) devices and Data Fusion techniques which have also gained popularity in both, civilian and military environments, such as, emergence of Smart Cities and Internet of Battlefield Things (IoBT). This usually requires capturing and consolidating data from multiple sources. Because datasets do not necessarily originate from identical sensors, fused data typically results in a complex Big Data problem. Due to potentially sensitive nature of IoT datasets, Blockchain technology is used to facilitate secure sharing of IoT datasets, which allows digital information to be distributed, but not copied. However, blockchain has several limitations related to complexity, scalability, and excessive energy consumption. We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal. In one of the latest attempts to the military modernization, we investigate sensor fusion approach by investigating the challenges of enabling an intelligent identification and detection operation and demonstrates the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application for specific hand gesture alert system from wearable devices.

北京阿比特科技有限公司