亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, the generalized finite element method (GFEM) for solving second order elliptic equations with rough coefficients is studied. New optimal local approximation spaces for GFEMs based on local eigenvalue problems involving a partition of unity are presented. These new spaces have advantages over those proposed in [I. Babuska and R. Lipton, Multiscale Model.\;\,Simul., 9 (2011), pp.~373--406]. First, in addition to a nearly exponential decay rate of the local approximation errors with respect to the dimensions of the local spaces, the rate of convergence with respect to the size of the oversampling region is also established. Second, the theoretical results hold for problems with mixed boundary conditions defined on general Lipschitz domains. Finally, an efficient and easy-to-implement technique for generating the discrete $A$-harmonic spaces is proposed which relies on solving an eigenvalue problem associated with the Dirichlet-to-Neumann operator, leading to a substantial reduction in computational cost. Numerical experiments are presented to support the theoretical analysis and to confirm the effectiveness of the new method.

相關內容

We present a novel approach to adaptive optimal design of groundwater surveys - a methodology for choosing the location of the next monitoring well. Our dual-weighted approach borrows ideas from Bayesian Optimisation and goal-oriented error estimation to propose the next monitoring well, given that some data is already available from existing wells. Our method is distinct from other optimal design strategies in that it does not rely on Fisher Information and it instead directly exploits the posterior uncertainty and the expected solution to a dual (or adjoint) problem to construct an acquisition function that optimally reduces the uncertainty in the model as a whole and some engineering quantity of interest in particular. We demonstrate our approach in the context of 2D groundwater flow example and show that the dual-weighted approach outperforms the baseline approach with respect to reducing the error in the posterior estimate of the quantity of interest.

The aim of this paper is to propose an efficient adaptive finite element method for eigenvalue problems based on the multilevel correction scheme and inverse power method. This method involves solving associated boundary value problems on each adaptive partitions and very low dimensional eigenvalue problems on some special meshes which are controlled by the proposed algorithm. Since we Hence the efficiency of solving eigenvalue problems can be improved to be similar to the adaptive finite element method for the associated boundary value problems. The convergence and optimal complexity is theoretically verified and numerically demonstrated.

In this work, we present a positivity-preserving entropy-based adaptive filtering method for shock capturing in discontinuous spectral element methods. By adapting the filter strength to enforce positivity and a local discrete minimum entropy principle, the resulting approach can robustly resolve strong discontinuities with sub-element resolution, does not require problem-dependent parameter tuning, and can be easily implemented on general unstructured meshes with relatively low computational cost. The efficacy of the approach is shown in numerical experiments on hyperbolic and mixed hyperbolic-parabolic conservation laws such as the Euler and Navier-Stokes equations for problems including extreme shocks, shock-vortex interactions, and complex compressible turbulent flows.

We study Bayesian data assimilation (filtering) for time-evolution PDEs, for which the underlying forward problem may be very unstable or ill-posed. Such PDEs, which include the Navier-Stokes equations of fluid dynamics, are characterized by a high sensitivity of solutions to perturbations of the initial data, a lack of rigorous global well-posedness results as well as possible non-convergence of numerical approximations. Under very mild and readily verifiable general hypotheses on the forward solution operator of such PDEs, we prove that the posterior measure expressing the solution of the Bayesian filtering problem is stable with respect to perturbations of the noisy measurements, and we provide quantitative estimates on the convergence of approximate Bayesian filtering distributions computed from numerical approximations. For the Navier-Stokes equations, our results imply uniform stability of the filtering problem even at arbitrarily small viscosity, when the underlying forward problem may become ill-posed, as well as the compactness of numerical approximants in a suitable metric on time-parametrized probability measures.

Previous papers have shown the impact of partial convergence of discretized PDE on the accuracy of tangent and adjoint linearizations. A series of papers suggested linearization of the fixed point iteration used in the solution process as a means of computing the sensitivities rather than linearizing the discretized PDE, as the lack of convergence of the nonlinear problem indicates that the discretized form of the governing equations has not been satisfied. These works showed that the accuracy of an approximate linearization depends in part on the convergence of the nonlinear system. This work shows an error analysis of the impact of the approximate linearization and the convergence of the nonlinear problem for both the tangent and adjoint modes and provides a series of results for an exact Newton solver, an inexact Newton solver, and a low storage explicit Runge-Kutta scheme to confirm the error analyses.

We develop structure-preserving finite element methods for the incompressible, resistive Hall magnetohydrodynamics (MHD) equations. These equations incorporate the Hall current term in Ohm's law and provide a more appropriate description of fully ionized plasmas than the standard MHD equations on length scales close to or smaller than the ion skin depth. We introduce a stationary discrete variational formulation of Hall MHD that enforces the magnetic Gauss's law exactly (up to solver tolerances) and prove the well-posedness and convergence of a Picard linearization. For the transient problem, we present time discretizations that preserve the energy and magnetic and hybrid helicity precisely in the ideal limit for two types of boundary conditions. Additionally, we present an augmented Lagrangian preconditioning technique for both the stationary and transient cases. We confirm our findings with several numerical experiments.

We establish a novel convergent iteration framework for a weak approximation of general switching diffusion. The key theoretical basis of the proposed approach is a restriction of the maximum number of switching so as to untangle and compensate a challenging system of weakly coupled partial differential equations to a collection of independent partial differential equations, for which a variety of accurate and efficient numerical methods are available. Upper and lower bounding functions for the solutions are constructed using the iterative approximate solutions. We provide a rigorous convergence analysis for the iterative approximate solutions, as well as for the upper and lower bounding functions. Numerical results are provided to examine our theoretical findings and the effectiveness of the proposed framework.

We study the robust maximum flow problem and the robust maximum flow over time problem where a given number of arcs $\Gamma$ may fail or may be delayed. Two prominent models have been introduced for these problems: either one assigns flow to arcs fulfilling weak flow conservation in any scenario, or one assigns flow to paths where an arc failure or delay affects a whole path. We provide a unifying framework by presenting novel general models, in which we assign flow to subpaths. These models contain the known models as special cases and unify their advantages in order to obtain less conservative robust solutions. We give a thorough analysis with respect to complexity of the general models. In particular, we show that the general models are essentially NP-hard, whereas, e.g. in the static case with $\Gamma = 1$ an optimal solution can be computed in polynomial time. Further, we answer the open question about the complexity of the dynamic path model for $\Gamma = 1$. We also compare the solution quality of the different models. In detail, we show that the general models have better robust optimal values than the known models and we prove bounds on these gaps.

Group synchronization asks to recover group elements from their pairwise measurements. It has found numerous applications across various scientific disciplines. In this work, we focus on orthogonal and permutation group synchronization which are widely used in computer vision such as object matching and structure from motion. Among many available approaches, the spectral methods have enjoyed great popularity due to their efficiency and convenience. We will study the performance guarantees of the spectral methods in solving these two synchronization problems by investigating how well the computed eigenvectors approximate each group element individually. We establish our theory by applying the recent popular~\emph{leave-one-out} technique and derive a~\emph{block-wise} performance bound for the recovery of each group element via eigenvectors. In particular, for orthogonal group synchronization, we obtain a near-optimal performance bound for the group recovery in presence of additive Gaussian noise. For permutation group synchronization under random corruption, we show that the widely-used two-step procedure (spectral method plus rounding) can recover all the group elements exactly if the SNR (signal-to-noise ratio) is close to the information theoretical limit. Our numerical experiments confirm our theory and indicate a sharp phase transition for the exact group recovery.

Multirate methods have been used for decades to temporally evolve initial-value problems in which different components evolve on distinct time scales, and thus use of different step sizes for these components can result in increased computational efficiency. Generally, such methods select these different step sizes based on experimentation or stability considerations. Meanwhile for problems that evolve on a single time scale, adaptivity approaches that strive to control local temporal error are widely used to achieve numerical results of a desired accuracy with minimal computational effort, while alleviating the need for manual experimentation with different time step sizes. However, there is a notable gap in the publication record on the development of adaptive time-step controllers for multirate methods. In this paper, we extend the single-rate controller work of Gustafsson (1994) to the multirate method setting. Specifically, we develop controllers based on polynomial approximations to the principal error functions for both the "fast" and "slow" time scales within infinitesimal multirate (MRI) methods. We additionally investigate a variety of approaches for estimating the errors arising from each time scale within MRI methods. We then numerically evaluate the proposed multirate controllers and error estimation strategies on a range of multirate test problems, comparing their performance against an estimated optimal performance. Through this work, we combine the most performant of these approaches to arrive at a set of multirate adaptive time step controllers that robustly achieve desired solution accuracy with minimal computational effort.

北京阿比特科技有限公司