亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automated Guided Vehicles (AGVs) operate in synergy to execute specific tasks. These vehicles exchange information to ensure seamless collaboration, prevent collisions, and eliminate task redundancy. The advent of blockchain technology offers a promising avenue for establishing a secure and dependable communication infrastructure for AGVs. Nonetheless, it becomes imperative for AGVs to adopt efficient data transmission methodologies, especially when interacting with the dynamic nature of blockchain infrastructure where data undergoes frequent modifications. In the present study, we introduce a novel data transmission methodology tailored for blockchain-integrated AGVs utilizing the principles of Named Data Networking (NDN). A simulated environment was crafted and executed in NetSim, wherein multiple AGVs collaboratively endeavored to locate concealed objectives within a defined region. Upon discovery of novel elements, such as obstructions or concealed objectives, each AGV would update a collective blockchain repository. This blockchain infrastructure leverages NDN to fetch specific data blocks in response to data queries from individual AGVs. This system ensures that AGVs can navigate and scrutinize their environment with heightened efficiency, drawing upon the collective intelligence and shared experiences of the fleet.

相關內容

 區塊鏈(Blockchain)是由節點參與的分布式數據庫系統,它的特點是不可更改,不可偽造,也可以將其理解為賬簿系統(ledger)。它是比特幣的一個重要概念,完整比特幣區塊鏈的副本,記錄了其代幣(token)的每一筆交易。通過這些信息,我們可以找到每一個地址,在歷史上任何一點所擁有的價值。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Contemporary Large Language Models (LLMs) exhibit a high degree of code generation and comprehension capability. A particularly promising area is their ability to interpret code modules from unfamiliar libraries for solving user-instructed tasks. Recent work has shown that large proprietary LLMs can learn novel library usage in-context from demonstrations. These results raise several open questions: whether demonstrations of library usage is required, whether smaller (and more open) models also possess such capabilities, etc. In this work, we take a broader approach by systematically evaluating a diverse array of LLMs across three scenarios reflecting varying levels of domain specialization to understand their abilities and limitations in generating code based on libraries defined in-context. Our results show that even smaller open-source LLMs like Llama-2 and StarCoder demonstrate an adept understanding of novel code libraries based on specification presented in-context. Our findings further reveal that LLMs exhibit a surprisingly high proficiency in learning novel library modules even when provided with just natural language descriptions or raw code implementations of the functions, which are often cheaper to obtain than demonstrations. Overall, our results pave the way for harnessing LLMs in more adaptable and dynamic coding environments.

Large Language Models (LLMs) serve as repositories of extensive world knowledge, enabling them to perform tasks such as question-answering and fact-checking. However, this knowledge can become obsolete as global contexts change. In this paper, we introduce a novel problem in the realm of continual learning: Online Continual Knowledge Learning (OCKL). This problem formulation aims to manage the dynamic nature of world knowledge in LMs under real-time constraints. We propose a new benchmark and evaluation metric designed to measure both the rate of new knowledge acquisition and the retention of previously learned knowledge. Our empirical evaluation, conducted using a variety of state-of-the-art methods, establishes robust base-lines for OCKL. Our results reveal that existing continual learning approaches are unfortunately insufficient for tackling the unique challenges posed by OCKL. We identify key factors that influence the trade-off between knowledge acquisition and retention, thereby advancing our understanding of how to train LMs in a continually evolving environment.

Conventional Knowledge Graph Construction (KGC) approaches typically follow the static information extraction paradigm with a closed set of pre-defined schema. As a result, such approaches fall short when applied to dynamic scenarios or domains, whereas a new type of knowledge emerges. This necessitates a system that can handle evolving schema automatically to extract information for KGC. To address this need, we propose a new task called schema-adaptable KGC, which aims to continually extract entity, relation, and event based on a dynamically changing schema graph without re-training. We first split and convert existing datasets based on three principles to build a benchmark, i.e., horizontal schema expansion, vertical schema expansion, and hybrid schema expansion; then investigate the schema-adaptable performance of several well-known approaches such as Text2Event, TANL, UIE and GPT-3.5. We further propose a simple yet effective baseline dubbed \textsc{AdaKGC}, which contains schema-enriched prefix instructor and schema-conditioned dynamic decoding to better handle evolving schema. Comprehensive experimental results illustrate that AdaKGC can outperform baselines but still have room for improvement. We hope the proposed work can deliver benefits to the community. Code and datasets available at //github.com/zjunlp/AdaKGC.

Toeplitz Neural Networks (TNNs) have exhibited outstanding performance in various sequence modeling tasks. They outperform commonly used Transformer-based models while benefiting from log-linear space-time complexities. On the other hand, State Space Models (SSMs) achieve lower performance than TNNs in language modeling but offer the advantage of constant inference complexity. In this paper, we aim to combine the strengths of TNNs and SSMs by converting TNNs to SSMs during inference, thereby enabling TNNs to achieve the same constant inference complexities as SSMs. To accomplish this, we formulate the conversion process as an optimization problem and provide a closed-form solution. We demonstrate how to transform the target equation into a Vandermonde linear system problem, which can be efficiently solved using the Discrete Fourier Transform (DFT). Notably, our method requires no training and maintains numerical stability. It can be also applied to any LongConv-based model. To assess its effectiveness, we conduct extensive experiments on language modeling tasks across various settings. Additionally, we compare our method to other gradient-descent solutions, highlighting the superior numerical stability of our approach. The source code is available at //github.com/OpenNLPLab/ETSC-Exact-Toeplitz-to-SSM-Conversion.

We proposed a new Convolution Neural Network implementation optimized for sparse 3D data inference. This implementation uses NanoVDB as the data structure to store the sparse tensor. It leaves a relatively small memory footprint while maintaining high performance. We demonstrate that this architecture is around 20 times faster than the state-of-the-art dense CNN model on a high-resolution 3D object classification network.

Counterfactual Explanations (CEs) help address the question: How can the factors that influence the prediction of a predictive model be changed to achieve a more favorable outcome from a user's perspective? Thus, they bear the potential to guide the user's interaction with AI systems since they represent easy-to-understand explanations. To be applicable, CEs need to be realistic and actionable. In the literature, various methods have been proposed to generate CEs. However, the majority of research on CEs focuses on classification problems where questions like ``What should I do to get my rejected loan approved?" are raised. In practice, answering questions like ``What should I do to increase my salary?" are of a more regressive nature. In this paper, we introduce a novel method to generate CEs for a pre-trained regressor by first disentangling the label-relevant from the label-irrelevant dimensions in the latent space. CEs are then generated by combining the label-irrelevant dimensions and the predefined output. The intuition behind this approach is that the ideal counterfactual search should focus on the label-irrelevant characteristics of the input and suggest changes toward target-relevant characteristics. Searching in the latent space could help achieve this goal. We show that our method maintains the characteristics of the query sample during the counterfactual search. In various experiments, we demonstrate that the proposed method is competitive based on different quality measures on image and tabular datasets in regression problem settings. It efficiently returns results closer to the original data manifold compared to three state-of-the-art methods, which is essential for realistic high-dimensional machine learning applications. Our code will be made available as an open-source package upon the publication of this work.

The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Graph neural networks (GNNs) have been proven to be effective in various network-related tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which gives rise to one fundamental question: is the low-frequency information all we need in the real world applications? In this paper, we first present an experimental investigation assessing the roles of low-frequency and high-frequency signals, where the results clearly show that exploring low-frequency signal only is distant from learning an effective node representation in different scenarios. How can we adaptively learn more information beyond low-frequency information in GNNs? A well-informed answer can help GNNs enhance the adaptability. We tackle this challenge and propose a novel Frequency Adaptation Graph Convolutional Networks (FAGCN) with a self-gating mechanism, which can adaptively integrate different signals in the process of message passing. For a deeper understanding, we theoretically analyze the roles of low-frequency signals and high-frequency signals on learning node representations, which further explains why FAGCN can perform well on different types of networks. Extensive experiments on six real-world networks validate that FAGCN not only alleviates the over-smoothing problem, but also has advantages over the state-of-the-arts.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

北京阿比特科技有限公司