亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a deep learning-based spectral demosaicing technique trained in an unsupervised manner. Many existing deep learning-based techniques relying on supervised learning with synthetic images, often underperform on real-world images especially when the number of spectral bands increases. According to the characteristics of the spectral mosaic image, this paper proposes a mosaic loss function, the corresponding model structure, a transformation strategy, and an early stopping strategy, which form a complete unsupervised spectral demosaicing framework. A challenge in real-world spectral demosaicing is inconsistency between the model parameters and the computational resources of the imager. We reduce the complexity and parameters of the spectral attention module by dividing the spectral attention tensor into spectral attention matrices in the spatial dimension and spectral attention vector in the channel dimension, which is more suitable for unsupervised framework. This paper also presents Mosaic25, a real 25-band hyperspectral mosaic image dataset of various objects, illuminations, and materials for benchmarking. Extensive experiments on synthetic and real-world datasets demonstrate that the proposed method outperforms conventional unsupervised methods in terms of spatial distortion suppression, spectral fidelity, robustness, and computational cost.

相關內容

Deep reinforcement learning (DRL) has seen remarkable success in the control of single robots. However, applying DRL to robot swarms presents significant challenges. A critical challenge is non-stationarity, which occurs when two or more robots update individual or shared policies concurrently, thereby engaging in an interdependent training process with no guarantees of convergence. Circumventing non-stationarity typically involves training the robots with global information about other agents' states and/or actions. In contrast, in this paper we explore how to remove the need for global information. We pose our problem as a Partially Observable Markov Decision Process, due to the absence of global knowledge on other agents. Using collective transport as a testbed scenario, we study two approaches to multi-agent training. In the first, the robots exchange no messages, and are trained to rely on implicit communication through push-and-pull on the object to transport. In the second approach, we introduce Global State Prediction (GSP), a network trained to forma a belief over the swarm as a whole and predict its future states. We provide a comprehensive study over four well-known deep reinforcement learning algorithms in environments with obstacles, measuring performance as the successful transport of the object to the goal within a desired time-frame. Through an ablation study, we show that including GSP boosts performance and increases robustness when compared with methods that use global knowledge.

As an extension of the pairwise spike-timing-dependent plasticity (STDP) learning rule, the triplet STDP is provided with greater capability in characterizing the synaptic changes in the biological neural cell. In this work, a novel mixed-signal circuit scheme, called multiple-step quantized triplet STDP, is designed to provide a precise and flexible implementation of coactivation triplet STDP learning rule in memristive synapse spiking neural network. The robustness of the circuit is greatly improved through the utilization of pulse-width encoded weight modulation signals. The circuit performance is studied through the simulations which are carried out in MATLAB Simulink & Simscape, and assessment is given by comparing the results of circuits with the algorithmic approaches.

Building defect prediction models based on online learning can enhance prediction accuracy. It continuously rebuilds a new prediction model when adding a new data point. However, predicting a module as "non-defective" (i.e., negative prediction) can result in fewer test cases for such modules. Therefore, defects can be overlooked during testing, even when the module is defective. The erroneous test results are used as learning data by online learning, which could negatively affect prediction accuracy. In our experiment, we demonstrate this negative influence on prediction accuracy.

This work presents a large-scale simulation study investigating the deployment and operation of distributed swarms of CubeSats for interplanetary missions to small celestial bodies. Utilizing Taylor numerical integration and advanced collision detection techniques, we explore the potential of large CubeSat swarms in capturing gravity signals and reconstructing the internal mass distribution of a small celestial body while minimizing risks and Delta V budget. Our results offer insight into the applicability of this approach for future deep space exploration missions.

Compact neural network offers many benefits for real-world applications. However, it is usually challenging to train the compact neural networks with small parameter sizes and low computational costs to achieve the same or better model performance compared to more complex and powerful architecture. This is particularly true for multitask learning, with different tasks competing for resources. We present a simple, efficient and effective multitask learning overparameterisation neural network design by overparameterising the model architecture in training and sharing the overparameterised model parameters more effectively across tasks, for better optimisation and generalisation. Experiments on two challenging multitask datasets (NYUv2 and COCO) demonstrate the effectiveness of the proposed method across various convolutional networks and parameter sizes.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.

北京阿比特科技有限公司