亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we investigate the use of reinforcement-learning based prediction approaches for a real drinking-water treatment plant. Developing such a prediction system is a critical step on the path to optimizing and automating water treatment. Before that, there are many questions to answer about the predictability of the data, suitable neural network architectures, how to overcome partial observability and more. We first describe this dataset, and highlight challenges with seasonality, nonstationarity, partial observability, and heterogeneity across sensors and operation modes of the plant. We then describe General Value Function (GVF) predictions -- discounted cumulative sums of observations -- and highlight why they might be preferable to classical n-step predictions common in time series prediction. We discuss how to use offline data to appropriately pre-train our temporal difference learning (TD) agents that learn these GVF predictions, including how to select hyperparameters for online fine-tuning in deployment. We find that the TD-prediction agent obtains an overall lower normalized mean-squared error than the n-step prediction agent. Finally, we show the importance of learning in deployment, by comparing a TD agent trained purely offline with no online updating to a TD agent that learns online. This final result is one of the first to motivate the importance of adapting predictions in real-time, for non-stationary high-volume systems in the real world.

相關內容

Semantic communication initiates a new direction for future communication. In this paper, we aim to establish a systematic framework of semantic information theory (SIT). First, we propose a semantic communication model and define the synonymous mapping to indicate the critical relationship between semantic information and syntactic information. Based on this core concept, we introduce the measures of semantic information, such as semantic entropy $H_s(\tilde{U})$, up/down semantic mutual information $I^s(\tilde{X};\tilde{Y})$ $(I_s(\tilde{X};\tilde{Y}))$, semantic capacity $C_s=\max_{p(x)}I^s(\tilde{X};\tilde{Y})$, and semantic rate-distortion function $R_s(D)=\min_{p(\hat{x}|x):\mathbb{E}d_s(\tilde{x},\hat{\tilde{x}})\leq D}I_s(\tilde{X};\hat{\tilde{X}})$. Furthermore, we prove three coding theorems of SIT, that is, the semantic source coding theorem, semantic channel coding theorem, and semantic rate-distortion coding theorem. We find that the limits of information theory are extended by using synonymous mapping, that is, $H_s(\tilde{U})\leq H(U)$, $C_s\geq C$ and $R_s(D)\leq R(D)$. All these works composite the basis of semantic information theory. In summary, the theoretic framework proposed in this paper is a natural extension of classic information theory and may reveal great performance potential for future communication.

In this paper, we propose an online-matching-based model to tackle the two fundamental issues, matching and pricing, existing in a wide range of real-world gig platforms, including ride-hailing (matching riders and drivers), crowdsourcing markets (pairing workers and tasks), and online recommendations (offering items to customers). Our model assumes the arriving distributions of dynamic agents (e.g., riders, workers, and buyers) are accessible in advance, and they can change over time, which is referred to as \emph{Known Heterogeneous Distributions} (KHD). In this paper, we initiate variance analysis for online matching algorithms under KHD. Unlike the popular competitive-ratio (CR) metric, the variance of online algorithms' performance is rarely studied due to inherent technical challenges, though it is well linked to robustness. We focus on two natural parameterized sampling policies, denoted by $\mathsf{ATT}(\gamma)$ and $\mathsf{SAMP}(\gamma)$, which appear as foundational bedrock in online algorithm design. We offer rigorous competitive ratio (CR) and variance analyses for both policies. Specifically, we show that $\mathsf{ATT}(\gamma)$ with $\gamma \in [0,1/2]$ achieves a CR of $\gamma$ and a variance of $\gamma \cdot (1-\gamma) \cdot B$ on the total number of matches with $B$ being the total matching capacity. In contrast, $\mathsf{SAMP}(\gamma)$ with $\gamma \in [0,1]$ accomplishes a CR of $\gamma (1-\gamma)$ and a variance of $\bar{\gamma} (1-\bar{\gamma})\cdot B$ with $\bar{\gamma}=\min(\gamma,1/2)$. All CR and variance analyses are tight and unconditional of any benchmark. As a byproduct, we prove that $\mathsf{ATT}(\gamma=1/2)$ achieves an optimal CR of $1/2$.

In this paper, we present a novel deep image clustering approach termed PICI, which enforces the partial information discrimination and the cross-level interaction in a joint learning framework. In particular, we leverage a Transformer encoder as the backbone, through which the masked image modeling with two paralleled augmented views is formulated. After deriving the class tokens from the masked images by the Transformer encoder, three partial information learning modules are further incorporated, including the PISD module for training the auto-encoder via masked image reconstruction, the PICD module for employing two levels of contrastive learning, and the CLI module for mutual interaction between the instance-level and cluster-level subspaces. Extensive experiments have been conducted on six real-world image datasets, which demononstrate the superior clustering performance of the proposed PICI approach over the state-of-the-art deep clustering approaches. The source code is available at //github.com/Regan-Zhang/PICI.

In this paper, we leverage a multi-agent reinforcement learning (MARL) framework to jointly learn a computation offloading decision and multichannel access policy with corresponding signaling. Specifically, the base station and industrial Internet of Things mobile devices are reinforcement learning agents that need to cooperate to execute their computation tasks within a deadline constraint. We adopt an emergent communication protocol learning framework to solve this problem. The numerical results illustrate the effectiveness of emergent communication in improving the channel access success rate and the number of successfully computed tasks compared to contention-based, contention-free, and no-communication approaches. Moreover, the proposed task offloading policy outperforms remote and local computation baselines.

In this paper, we present ECL, a novel multi-modal dataset containing the textual and numerical data from corporate 10K filings and associated binary bankruptcy labels. Furthermore, we develop and critically evaluate several classical and neural bankruptcy prediction models using this dataset. Our findings suggest that the information contained in each data modality is complementary for bankruptcy prediction. We also see that the binary bankruptcy prediction target does not enable our models to distinguish next year bankruptcy from an unhealthy financial situation resulting in bankruptcy in later years. Finally, we explore the use of LLMs in the context of our task. We show how GPT-based models can be used to extract meaningful summaries from the textual data but zero-shot bankruptcy prediction results are poor. All resources required to access and update the dataset or replicate our experiments are available on github.com/henriarnoUG/ECL.

In this paper, we propose the use of self-supervised pretraining on a large unlabelled data set to improve the performance of a personalized voice activity detection (VAD) model in adverse conditions. We pretrain a long short-term memory (LSTM)-encoder using the autoregressive predictive coding (APC) framework and fine-tune it for personalized VAD. We also propose a denoising variant of APC, with the goal of improving the robustness of personalized VAD. The trained models are systematically evaluated on both clean speech and speech contaminated by various types of noise at different SNR-levels and compared to a purely supervised model. Our experiments show that self-supervised pretraining not only improves performance in clean conditions, but also yields models which are more robust to adverse conditions compared to purely supervised learning.

In this paper, we introduce a new approach for constructing robust well-balanced numerical methods for the one-dimensional Saint-Venant system with and without the Manning friction term. Following the idea presented in [R. Abgrall, Commun. Appl. Math. Comput. 5(2023), pp. 370-402], we first combine the conservative and non-conservative (primitive) formulations of the studied conservative hyperbolic system in a natural way. The solution is globally continuous and described by a combination of point values and average values. The point values and average values will then be evolved by two different forms of PDEs: a conservative version of the cell averages and a possibly non-conservative one for the points. We show how to deal with both the conservative and non-conservative forms of PDEs in a well-balanced manner. The developed schemes are capable of exactly preserving both the still-water and moving-water equilibria. Compared with existing well-balanced methods, this new class of scheme is nonlinear-equations-solver-free. This makes the developed schemes less computationally costly and easier to extend to other models. We demonstrate the behavior of the proposed new scheme on several challenging examples.

Model complexity is a fundamental problem in deep learning. In this paper we conduct a systematic overview of the latest studies on model complexity in deep learning. Model complexity of deep learning can be categorized into expressive capacity and effective model complexity. We review the existing studies on those two categories along four important factors, including model framework, model size, optimization process and data complexity. We also discuss the applications of deep learning model complexity including understanding model generalization capability, model optimization, and model selection and design. We conclude by proposing several interesting future directions.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司