亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Platform trials evaluate the efficacy of multiple treatments, allowing for late entry of the experimental arms and enabling efficiency gains by sharing controls. The power of individual treatment-control comparisons in such trials can be improved by utilizing non-concurrent controls (NCC) in the analysis. We present the R-package NCC for the design and analysis of platform trials using non-concurrent controls. NCC allows for simulating platform trials and evaluating the properties of analysis methods that make use of non-concurrent controls in a variety of settings. We describe the main NCC functions and show how to use the package to simulate and analyse platform trials by means of specific examples.

相關內容

Model Predictive Control (MPC) has become a popular framework in embedded control for high-performance autonomous systems. However, to achieve good control performance using MPC, an accurate dynamics model is key. To maintain real-time operation, the dynamics models used on embedded systems have been limited to simple first-principle models, which substantially limits their representative power. In contrast to such simple models, machine learning approaches, specifically neural networks, have been shown to accurately model even complex dynamic effects, but their large computational complexity hindered combination with fast real-time iteration loops. With this work, we present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline. Our experiments, performed in simulation and the real world onboard a highly agile quadrotor platform, demonstrate the capabilities of the described system to run learned models with, previously infeasible, large modeling capacity using gradient-based online optimization MPC. Compared to prior implementations of neural networks in online optimization MPC we can leverage models of over 4000 times larger parametric capacity in a 50Hz real-time window on an embedded platform. Further, we show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.

Randomized controlled trials (RCTs) are a cornerstone of comparative effectiveness because they remove the confounding bias present in observational studies. However, RCTs are typically much smaller than observational studies because of financial and ethical considerations. Therefore it is of great interest to be able to incorporate plentiful observational data into the analysis of smaller RCTs. Previous estimators developed for this purpose rely on unrealistic additional assumptions without which the added data can bias the effect estimate. Recent work proposed an alternative method (prognostic adjustment) that imposes no additional assumption and increases efficiency in the analysis of RCTs. The idea is to use the observational data to learn a prognostic model: a regression of the outcome onto the covariates. The predictions from this model, generated from the RCT subjects' baseline variables, are used as a covariate in a linear model. In this work, we extend this framework to work when conducting inference with nonparametric efficient estimators in trial analysis. Using simulations, we find that this approach provides greater power (i.e., smaller standard errors) than without prognostic adjustment, especially when the trial is small. We also find that the method is robust to observed or unobserved shifts between the observational and trial populations and does not introduce bias. Lastly, we showcase this estimator leveraging real-world historical data on a randomized blood transfusion study of trauma patients.

Self-supervised learning (SSL) has recently achieved impressive performance on various time series tasks. The most prominent advantage of SSL is that it reduces the dependence on labeled data. Based on the pre-training and fine-tuning strategy, even a small amount of labeled data can achieve high performance. Compared with many published self-supervised surveys on computer vision and natural language processing, a comprehensive survey for time series SSL is still missing. To fill this gap, we review current state-of-the-art SSL methods for time series data in this article. To this end, we first comprehensively review existing surveys related to SSL and time series, and then provide a new taxonomy of existing time series SSL methods by summarizing them from three perspectives: generative-based, contrastive-based, and adversarial-based. These methods are further divided into ten subcategories with detailed reviews and discussions about their key intuitions, main frameworks, advantages and disadvantages. To facilitate the experiments and validation of time series SSL methods, we also summarize datasets commonly used in time series forecasting, classification, anomaly detection, and clustering tasks. Finally, we present the future directions of SSL for time series analysis.

Graph neural networks (GNNs) are among the most powerful tools in deep learning. They routinely solve complex problems on unstructured networks, such as node classification, graph classification, or link prediction, with high accuracy. However, both inference and training of GNNs are complex, and they uniquely combine the features of irregular graph processing with dense and regular computations. This complexity makes it very challenging to execute GNNs efficiently on modern massively parallel architectures. To alleviate this, we first design a taxonomy of parallelism in GNNs, considering data and model parallelism, and different forms of pipelining. Then, we use this taxonomy to investigate the amount of parallelism in numerous GNN models, GNN-driven machine learning tasks, software frameworks, or hardware accelerators. We use the work-depth model, and we also assess communication volume and synchronization. We specifically focus on the sparsity/density of the associated tensors, in order to understand how to effectively apply techniques such as vectorization. We also formally analyze GNN pipelining, and we generalize the established Message-Passing class of GNN models to cover arbitrary pipeline depths, facilitating future optimizations. Finally, we investigate different forms of asynchronicity, navigating the path for future asynchronous parallel GNN pipelines. The outcomes of our analysis are synthesized in a set of insights that help to maximize GNN performance, and a comprehensive list of challenges and opportunities for further research into efficient GNN computations. Our work will help to advance the design of future GNNs.

The Quadratic Assignment Problem (QAP) is an important combinatorial optimization problem with applications in many areas including logistics and manufacturing. QAP is known to be NP-hard, a computationally challenging problem, which requires the use of sophisticated heuristics in finding acceptable solutions for most real-world data sets. In this paper, we present GPU-accelerated implementations of a 2opt and a tabu search algorithm for solving the QAP. For both algorithms, we extract parallelism at multiple levels and implement novel code optimization techniques that fully utilize the GPU hardware. On a series of experiments on the well-known QAPLIB data sets, our solutions, on average run an order-of-magnitude faster than previous implementations and deliver up to a factor of 63 speedup on specific instances. The quality of the solutions produced by our implementations of 2opt and tabu is within 1.03% and 0.15% of the best known values. The experimental results also provide key insight into the performance characteristics of accelerated QAP solvers. In particular, the results reveal that both algorithmic choice and the shape of the input data sets are key factors in finding efficient implementations.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.

Deep learning techniques have received much attention in the area of image denoising. However, there are substantial differences in the various types of deep learning methods dealing with image denoising. Specifically, discriminative learning based on deep learning can ably address the issue of Gaussian noise. Optimization models based on deep learning are effective in estimating the real noise. However, there has thus far been little related research to summarize the different deep learning techniques for image denoising. In this paper, we offer a comparative study of deep techniques in image denoising. We first classify the deep convolutional neural networks (CNNs) for additive white noisy images; the deep CNNs for real noisy images; the deep CNNs for blind denoising and the deep CNNs for hybrid noisy images, which represents the combination of noisy, blurred and low-resolution images. Then, we analyze the motivations and principles of the different types of deep learning methods. Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analysis. Finally, we point out some potential challenges and directions of future research.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on pose. The model is based on a generative adversarial network (GAN) and used specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and highly complementary to features learned with the original images. Importantly, we now have a model that generalizes to any new re-id dataset without the need for collecting any training data for model fine-tuning, thus making a deep re-id model truly scalable. Extensive experiments on five benchmarks show that our model outperforms the state-of-the-art models, often significantly. In particular, the features learned on Market-1501 can achieve a Rank-1 accuracy of 68.67% on VIPeR without any model fine-tuning, beating almost all existing models fine-tuned on the dataset.

北京阿比特科技有限公司