亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we deeply explore several mechanisms employed by Transformer-based language models in factual recall tasks. In zero-shot scenarios, given a prompt like ``The capital of France is,'' task-specific attention heads extract the topic entity, such as ``France,'' from the context and pass it to subsequent MLPs to recall the required answer such as ``Paris.'' We introduce a novel analysis method aimed at decomposing the outputs of the MLP into components understandable by humans. Through this method, we quantify the function of the MLP layer following these task-specific heads. In the residual stream, it either erases or amplifies the information originating from individual heads. Moreover, it generates a component that redirects the residual stream towards the direction of its expected answer. These zero-shot mechanisms are also employed in few-shot scenarios. Additionally, we observed a widely existent anti-overconfidence mechanism in the final layer of models, which suppresses correct predictions. We mitigate this suppression by leveraging our interpretation to improve factual recall confidence. Our interpretations have been evaluated across various language models, including the GPT-2 families, 1.3B OPT, and 7B Llama-2, encompassing diverse tasks spanning various domains of factual knowledge.

相關內容

This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs). We start by making the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs, and yet it receives disproportionally low attention from the research community. We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization. In each scenario, we underscore the importance of data, highlight promising research directions, and articulate the potential impacts on the research community and, where applicable, the society as a whole. For instance, we advocate for a suite of data-centric benchmarks tailored to the scale and complexity of data for LLMs. These benchmarks can be used to develop new data curation methods and document research efforts and results, which can help promote openness and transparency in AI and LLM research.

This paper introduces a novel formulation of the clustering problem, namely the Minimum Sum-of-Squares Clustering of Infinitely Tall Data (MSSC-ITD), and presents HPClust, an innovative set of hybrid parallel approaches for its effective solution. By utilizing modern high-performance computing techniques, HPClust enhances key clustering metrics: effectiveness, computational efficiency, and scalability. In contrast to vanilla data parallelism, which only accelerates processing time through the MapReduce framework, our approach unlocks superior performance by leveraging the multi-strategy competitive-cooperative parallelism and intricate properties of the objective function landscape. Unlike other available algorithms that struggle to scale, our algorithm is inherently parallel in nature, improving solution quality through increased scalability and parallelism, and outperforming even advanced algorithms designed for small and medium-sized datasets. Our evaluation of HPClust, featuring four parallel strategies, demonstrates its superiority over traditional and cutting-edge methods by offering better performance in the key metrics. These results also show that parallel processing not only enhances the clustering efficiency, but the accuracy as well. Additionally, we explore the balance between computational efficiency and clustering quality, providing insights into optimal parallel strategies based on dataset specifics and resource availability. This research advances our understanding of parallelism in clustering algorithms, demonstrating that a judicious hybridization of advanced parallel approaches yields optimal results for MSSC-ITD. Experiments on synthetic data further confirm HPClust's exceptional scalability and robustness to noise.

In this paper, we study the problem of detecting machine-generated text when the large language model (LLM) it is possibly derived from is unknown. We do so by apply ensembling methods to the outputs from DetectGPT classifiers (Mitchell et al. 2023), a zero-shot model for machine-generated text detection which is highly accurate when the generative (or base) language model is the same as the discriminative (or scoring) language model. We find that simple summary statistics of DetectGPT sub-model outputs yield an AUROC of 0.73 (relative to 0.61) while retaining its zero-shot nature, and that supervised learning methods sharply boost the accuracy to an AUROC of 0.94 but require a training dataset. This suggests the possibility of further generalisation to create a highly-accurate, model-agnostic machine-generated text detector.

Comprehensive evaluation is one of the basis of experimental science. In High-Performance Graph Processing, a thorough evaluation of contributions becomes more achievable by supporting common input formats over different frameworks. However, each framework creates its specific format, which may not support reading large-scale real-world graph datasets. This shows a demand for high-performance libraries capable of loading graphs to (i) accelerate designing new graph algorithms, (ii) to evaluate the contributions on a wide range of graph algorithms, and (iii) to facilitate easy and fast comparison over different graph frameworks. To that end, we present ParaGrapher, a high-performance API and library for loading large-scale and compressed graphs. ParaGrapher supports different types of requests for accessing graphs in shared- and distributed-memory and out-of-core graph processing. We explain the design of ParaGrapher and present a performance model of graph decompression, which is used for evaluation of ParaGrapher over three storage types. Our evaluation shows that by decompressing compressed graphs in WebGraph format, ParaGrapher delivers up to 3.2 times speedup in loading and up to 5.2 times speedup in end-to-end execution in comparison to the binary and textual formats. ParaGrapher is available online on //blogs.qub.ac.uk/DIPSA/ParaGrapher/.

In this paper, we study the offline RL problem with linear function approximation. Our main structural assumption is that the MDP has low inherent Bellman error, which stipulates that linear value functions have linear Bellman backups with respect to the greedy policy. This assumption is natural in that it is essentially the minimal assumption required for value iteration to succeed. We give a computationally efficient algorithm which succeeds under a single-policy coverage condition on the dataset, namely which outputs a policy whose value is at least that of any policy which is well-covered by the dataset. Even in the setting when the inherent Bellman error is 0 (termed linear Bellman completeness), our algorithm yields the first known guarantee under single-policy coverage. In the setting of positive inherent Bellman error ${\varepsilon_{\mathrm{BE}}} > 0$, we show that the suboptimality error of our algorithm scales with $\sqrt{\varepsilon_{\mathrm{BE}}}$. Furthermore, we prove that the scaling of the suboptimality with $\sqrt{\varepsilon_{\mathrm{BE}}}$ cannot be improved for any algorithm. Our lower bound stands in contrast to many other settings in reinforcement learning with misspecification, where one can typically obtain performance that degrades linearly with the misspecification error.

In this paper, we present a quantum property testing algorithm for recognizing a context-free language that is a concatenation of two palindromes $L_{REV}$. The query complexity of our algorithm is $O(\frac{1}{\varepsilon}n^{1/3}\log n)$, where $n$ is the length of an input. It is better than the classical complexity that is $\Theta^*(\sqrt{n})$. At the same time, in the general setting, the picture is different a little. Classical query complexity is $\Theta(n)$, and quantum query complexity is $\Theta^*(\sqrt{n})$. So, we obtain polynomial speed-up for both cases (general and property testing).

In this paper, we propose Evidential Conformal Prediction (ECP) method for image classifiers to generate the conformal prediction sets. Our method is designed based on a non-conformity score function that has its roots in Evidential Deep Learning (EDL) as a method of quantifying model (epistemic) uncertainty in DNN classifiers. We use evidence that are derived from the logit values of target labels to compute the components of our non-conformity score function: the heuristic notion of uncertainty in CP, uncertainty surprisal, and expected utility. Our extensive experimental evaluation demonstrates that ECP outperforms three state-of-the-art methods for generating CP sets, in terms of their set sizes and adaptivity while maintaining the coverage of true labels.

This paper addresses the task of modeling Deformable Linear Objects (DLOs), such as ropes and cables, during dynamic motion over long time horizons. This task presents significant challenges due to the complex dynamics of DLOs. To address these challenges, this paper proposes differentiable Discrete Elastic Rods For deformable linear Objects with Real-time Modeling (DEFORM), a novel framework that combines a differentiable physics-based model with a learning framework to model DLOs accurately and in real-time. The performance of DEFORM is evaluated in an experimental setup involving two industrial robots and a variety of sensors. A comprehensive series of experiments demonstrate the efficacy of DEFORM in terms of accuracy, computational speed, and generalizability when compared to state-of-the-art alternatives. To further demonstrate the utility of DEFORM, this paper integrates it into a perception pipeline and illustrates its superior performance when compared to the state-of-the-art methods while tracking a DLO even in the presence of occlusions. Finally, this paper illustrates the superior performance of DEFORM when compared to state-of-the-art methods when it is applied to perform autonomous planning and control of DLOs. Project page: //roahmlab.github.io/DEFORM/.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

北京阿比特科技有限公司